wolfhece.pyshields
Author: HECE - University of Liege, Pierre Archambeau Date: 2024
Copyright (c) 2024 University of Liege. All rights reserved.
This script and its content are protected by copyright law. Unauthorized copying or distribution of this file, via any medium, is strictly prohibited.
Module Contents
- wolfhece.pyshields.WASH_LOAD = 4[source]
Pierre Archambeau @date : 2022
Chezy : u = C (RJ)**.5 Strickler : C = K R**(1/6)
–> u = K R**(2/3) J**.5
en 2D : R = h
—> u = K h**(2/3) J**.5
J = u**2 / K**2 / h**(4/3)
mais aussi
- J = f/D * u**2 /2 /g
avec D = 4h
—> J = f/(4h) *u**2 /2 /g –> tau = J * rho * h * g
- Shields :
Theta = tau / ((rhom-rho) * g * d) Theta = tau / rho / ((s-1) * g * d) avec s = rhom/rho
Theta = J * h / ((s-1) * d)
- Strickler :
J = u**2 / K**2 / h**(4/3) tau = J * rho * h * g
tau = (q/K)**2 / h**(7/3) * rho * g
- Autres :
J = f/(4h) *u**2 /2 /g tau = J * rho * h * g
tau = f/8 * (q/h)**2 * rho
- References:
Telemac-Mascaret, https://gitlab.pam-retd.fr/otm/telemac-mascaret/-/blob/main/sources/gaia/shields.f
Yalin, Ferraira da Silva (2001), Fluvial Processes, IAHR Monograph
- Fredsoe, Jorgen and Deigaard Rolf. (1992). Mechanics of Coastal Sediment.
Sediment Transport. Advanced Series on Ocean Engineering - Vol. 3. World Scientific. Singapure.
- Madsen, Ole S., Wood, William. (2002). Sediment Transport Outside the
Surf Zone. In: Vincent, L., and Demirbilek, Z. (editors), Coastal Engineering Manual, Part III, Combined wave and current bottom boundary layer flow, Chapter III-6, Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, DC.
- Nielsen, Peter. (1992). Coastal Bottom Boundary Layers and
Sediment Transport. Advanced Series on Ocean Engineering - Vol. 4. World Scientific. Singapure.
- Type:
@author
- wolfhece.pyshields.get_sadim(d: float, rhom: float = 2650.0, rho: float = RHO_PUREWATER) float [source]
s_adim = d**(3/2) * ((s-1) * g)**.5 / (4 * nu)
[-] = [m^1.5 ] * [m^.5 s^-1] / [m^2 s^-1]
- wolfhece.pyshields.get_dstar(d: float, rhom: float = 2650.0, rho: float = RHO_PUREWATER) float [source]
compute d*
- wolfhece.pyshields.get_d_from_sadim(sadim: float, rhom: float = 2650.0, rho: float = RHO_PUREWATER) float [source]
s_adim = d**(3/2) * ((s-1) * g)**.5 / (4 * nu)
[-] = [m^1.5 ] * [m^.5 s^-1] / [m^2 s^-1]
- wolfhece.pyshields.get_d_from_dstar(dstar: float, rhom: float = 2650.0, rho: float = RHO_PUREWATER) float [source]
d_star = d * (g * (s-1) / nu**2)**(1/3)
[-] = [m] * ([m s^-2] / [m^4 s^-2])^(1/3)
- wolfhece.pyshields.get_psi_cr2(dstar: float) float [source]
http://docs.opentelemac.org/doxydocs/v8p2r0/html/shields_8f_source.html
- wolfhece.pyshields.get_tau_from_psiadim(psiadim, d: float, rhom: float = 2650, rho: float = RHO_PUREWATER) float [source]
- wolfhece.pyshields._d_cr(x: float, tau_obj: float, rhom: float, rho: float, xadim: float, yadim: float) float [source]
Equation to solve to get d_cr
- wolfhece.pyshields.get_d_cr(q: float, h: float, K: float, rhom: float = 2650.0, rho: float = RHO_PUREWATER, method='brenth', which=2) list[float] [source]
- Diamètre critique d’emportement par :
Shields
Izbach
:param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3] :param method : method to solve the equation (default ‘brenth’) :param which : which formula to use (default 2) – see funcs = [(get_sadim,get_psi_cr),(get_dstar,get_psi_cr2),(get_dstar,get_psi_cr3)]
- wolfhece.pyshields.get_settling_vel(d: float, rhom: float = 2650.0, rho: float = RHO_PUREWATER) float [source]
Vitesse de chute
:param d : grain diameter [m] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3]
- wolfhece.pyshields.get_Rouse(d: float, q: float, h: float, K: float, rhom: float = 2650.0, rho: float = RHO_PUREWATER) float [source]
Vitesse de chute
:param d : grain diameter [m] :param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3]
- wolfhece.pyshields._get_Rouse(d: float, q: float, h: float, K: float, rhom: float = 2650.0, rho: float = RHO_PUREWATER, frac: float = 50) float [source]
Settling velocity function – used in root_scalar
:param d : grain diameter [m] :param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3]
- wolfhece.pyshields.get_transport_mode(d: float, q: float, h: float, K: float, rhom: float = 2650.0, rho: float = RHO_PUREWATER)[source]
Transport mode
return in [BED_LOAD, SUSPENDED_LOAD_50, SUSPENDED_LOAD_100, WASH_LOAD]
:param d : grain diameter [m] :param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3]
- wolfhece.pyshields.get_d_cr_susp(q: float, h: float, K: float, rhom: float = 2650.0, rho: float = RHO_PUREWATER, method='brenth', which=50) float [source]
Diamètre critique d’emportement par suspension à 50% –> cf Rouse 1.2
:param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3]
- wolfhece.pyshields.shieldsdia_sadim(s_psicr=None, dstar_psicr=None, rhom=2650.0, rho=RHO_PUREWATER, figax=None) tuple[matplotlib.pyplot.Figure, matplotlib.pyplot.Axes] [source]
Plot Shields diagram with sadim
- wolfhece.pyshields.shieldsdia_dstar(s_psicr=None, dstar_psicr=None, rhom=2650.0, rho=RHO_PUREWATER, figax=None) tuple[matplotlib.pyplot.Figure, matplotlib.pyplot.Axes] [source]
Plot Shields diagram with dstar
- wolfhece.pyshields.shieldsdia_dim(figax=None) tuple[matplotlib.pyplot.Figure, matplotlib.pyplot.Axes] [source]
Plot Shields diagram with dimensional values
- wolfhece.pyshields.get_friction_slope_2D_Manning(q: float, h: float, n: float) float [source]
Compute friction slope j for 2D flow with Manning/Strickler friction law
:param q : discharge [m3/s] :param h : water depth [m] :param n : Manning friction coefficient [m-1/3.s]
- wolfhece.pyshields.get_shear_velocity_2D_Manning(q: float, h: float, n: float) float [source]
Compute shear velocity u_* for 2D flow with Manning/Strickler friction law
:param j : friction slope [-] :param h : water depth [m] :param q : discharge [m3/s] :param n : Manning friction coefficient [m-1/3.s]
- wolfhece.pyshields.get_Shields_2D_Manning(s: float, d: float, q: float, h: float, n: float) float [source]
Compute Shields dimensionless parameter for 2D flow with Manning/Strickler friction law
:param s : sediment density / water density [-] :param d : sediment diameter [m] :param q : discharge [m3/s] :param h : water depth [m] :param n : Manning friction coefficient [m-1/3.s]
See also get_Shields_2D_Strickler
- wolfhece.pyshields.get_Shields_2D_Strickler(s: float, d: float, q: float, h: float, K: float) float [source]
Compute Shields dimensionless parameter for 2D flow with Manning/Strickler friction law
:param s : sediment density / water density [-] :param d : sediment diameter [m] :param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s]
See also get_Shields_2D_Manning
- wolfhece.pyshields.izbach_d_cr(q: float, h: float, rhom: float = 2650, rho: float = RHO_PUREWATER, method='ridder') float [source]
https://en.wikipedia.org/wiki/Izbash_formula
u_c/ ((s-1) * g * d)**.5 = 1.7
- avec :
(s-1) = (rho_m - rho) / rho u_c = 85% u_moyen)
–> d = u_c**2 / (s * g) / 1.7**2
–> d = (0.85 * q/h)**2 / (s * g) / 1.7**2
:param q : discharge [m3/s] :param h : water depth [m] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3] :param method : method to solve the equation (default ‘ridder’)