Source code for wolfhece.pyshields

"""
Author: HECE - University of Liege, Pierre Archambeau
Date: 2024

Copyright (c) 2024 University of Liege. All rights reserved.

This script and its content are protected by copyright law. Unauthorized
copying or distribution of this file, via any medium, is strictly prohibited.
"""

import matplotlib.pyplot as plt
import math
import numpy as np
from scipy.optimize import root_scalar
from typing import Literal
import logging

from .friction_law import f_barr_bathurst

[docs] RHO_PUREWATER = 1000. # kg/m3
[docs] RHO_SEAWATER = 1025. # kg/m3
[docs] KIN_VISCOSITY = 1.e-6 # m2/s
[docs] GRAVITY = 9.81 # m/s2
[docs] BED_LOAD=1
[docs] SUSPENDED_LOAD_50=2
[docs] SUSPENDED_LOAD_100=3
[docs] WASH_LOAD=4
""" @author : Pierre Archambeau @date : 2022 Chezy : u = C (RJ)**.5 Strickler : C = K R**(1/6) --> u = K R**(2/3) J**.5 en 2D : R = h --> u = K h**(2/3) J**.5 J = u**2 / K**2 / h**(4/3) mais aussi J = f/D * u**2 /2 /g avec D = 4h --> J = f/(4h) *u**2 /2 /g --> tau = J * rho * h * g Shields : Theta = tau / ((rhom-rho) * g * d) Theta = tau / rho / ((s-1) * g * d) avec s = rhom/rho Theta = J * h / ((s-1) * d) Strickler : J = u**2 / K**2 / h**(4/3) tau = J * rho * h * g tau = (q/K)**2 / h**(7/3) * rho * g Autres : J = f/(4h) *u**2 /2 /g tau = J * rho * h * g tau = f/8 * (q/h)**2 * rho References: Telemac-Mascaret, https://gitlab.pam-retd.fr/otm/telemac-mascaret/-/blob/main/sources/gaia/shields.f Yalin, Ferraira da Silva (2001), Fluvial Processes, IAHR Monograph Fredsoe, Jorgen and Deigaard Rolf. (1992). Mechanics of Coastal Sediment. Sediment Transport. Advanced Series on Ocean Engineering - Vol. 3. World Scientific. Singapure. Madsen, Ole S., Wood, William. (2002). Sediment Transport Outside the Surf Zone. In: Vincent, L., and Demirbilek, Z. (editors), Coastal Engineering Manual, Part III, Combined wave and current bottom boundary layer flow, Chapter III-6, Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, DC. Nielsen, Peter. (1992). Coastal Bottom Boundary Layers and Sediment Transport. Advanced Series on Ocean Engineering - Vol. 4. World Scientific. Singapure. """
[docs] def get_sadim(d:float, rhom:float =2650., rho:float =RHO_PUREWATER) -> float: """ s_adim = d**(3/2) * ((s-1) * g)**.5 / (4 * nu) [-] = [m^1.5 ] * [m^.5 s^-1] / [m^2 s^-1] """ s=rhom/rho return d**(3./2.) * ((s-1) * GRAVITY)**.5 / (4 * KIN_VISCOSITY)
[docs] def get_dstar(d:float, rhom:float =2650., rho:float=RHO_PUREWATER) -> float: """ compute d* """ s = rhom/rho return d*(GRAVITY*(s-1)/KIN_VISCOSITY**2)**(1./3.) #VanRijn Formula
[docs] def sadim2dstar(sadim:float) -> float: return (4*sadim)**(2/3)
[docs] def dstar2sadim(dstar:float) -> float: return dstar**(3./2.) / 4
[docs] def get_d_from_sadim(sadim:float, rhom:float=2650., rho:float=RHO_PUREWATER) -> float: """ s_adim = d**(3/2) * ((s-1) * g)**.5 / (4 * nu) [-] = [m^1.5 ] * [m^.5 s^-1] / [m^2 s^-1] """ s=rhom/rho return (sadim*(4*KIN_VISCOSITY)/math.sqrt((s-1)*GRAVITY))**(2/3)
[docs] def get_d_from_dstar(dstar:float, rhom:float=2650., rho:float=RHO_PUREWATER) -> float: """ d_star = d * (g * (s-1) / nu**2)**(1/3) [-] = [m] * ([m s^-2] / [m^4 s^-2])^(1/3) """ s=rhom/rho return dstar / (GRAVITY*(s-1)/KIN_VISCOSITY**2)**(1./3.)
[docs] def get_psi_cr(s_adim:float) -> float: """ https://nl.mathworks.com/matlabcentral/fileexchange/97447-modified-shields-diagram-and-criterion?tab=reviews """ if s_adim<0.8: psicr = 0.1*(s_adim**(-2/7)) elif s_adim >= 300: psicr = 0.06 elif ( s_adim>=0.8 ) and ( s_adim<300 ): polpsi = _poly(math.log10(s_adim)) psicr = 10**polpsi return psicr
[docs] def get_psi_cr2(dstar:float) -> float: """ http://docs.opentelemac.org/doxydocs/v8p2r0/html/shields_8f_source.html """ if dstar <= 4.0: psicr = 0.24/dstar elif dstar <= 10.: psicr= 0.14*dstar**(-0.64) elif dstar <= 20.: psicr= 0.04*dstar**(-0.1) elif dstar <= 72.: psicr= 0.013*dstar**0.29 else: psicr= 0.045 return psicr
[docs] def get_psi_cr3(dstar:float) -> float: """ Fluvial Processes, IAHR 2001, pp 6-9 """ psicr = 0.13*dstar**-0.392*math.exp(-0.015*dstar**2.)+0.045*(1-math.exp(-0.068*dstar)) return psicr
# def get_shields_cr(d, rhom=2650., rho=RHO_PUREWATER, which=2): # """ # Example: # [critical_shear_velocity, tau_cr,xadim_val, psicr] = get_shields_cr(0.2E-3, 2650) # """ # funcs = [(get_sadim,get_psi_cr),(get_dstar,get_psi_cr2),(get_dstar,get_psi_cr3)] # # % Getting the sediment-fluid parameter # s = rhom/rho # [-] # denom_shields= (s-1)*GRAVITY*d # [m²/s²] en réalité denom/rho # xadim_val = funcs[which][0](d,rhom,rho) # psicr = funcs[which][1](xadim_val) # # Using the critical value of Shields parameter # # Knowing the maximum bottom shear stress # tau_cr = rho * denom_shields * psicr # Pa # critical_shear_velocity = math.sqrt(denom_shields * psicr) # m/s # return [critical_shear_velocity, tau_cr,xadim_val, psicr]
[docs] def _poly(x:float) -> float: return ((0.002235*x**5)-(0.06043*x**4)+(0.20307*x**3)+ \ (0.054252*x**2)-(0.636397*x)-1.03167)
[docs] def _dpolydx(x:float) -> float: """ derivative of _poly """ return ((0.002235*5*x**4)-(0.06043*4*x**3)+(0.20307*3*x**2)+ \ (0.054252*2*x)-(0.636397))
[docs] def get_sadim_min() -> float: return root_scalar(_dpolydx, method='bisect', bracket=[10, 20]).root
[docs] def get_tau_from_psiadim(psiadim, d:float, rhom:float=2650, rho:float=RHO_PUREWATER) -> float: s=rhom/rho denom_shields= (s-1)*GRAVITY*d ## en réalité denom/rho return rho * denom_shields * psiadim
[docs] def get_d_min(rhom:float=2650., rho:float=RHO_PUREWATER) -> float: return get_d_from_sadim(get_sadim_min(),rhom,rho)
[docs] def _d_cr(x:float, tau_obj:float, rhom:float, rho:float, xadim:float, yadim:float) -> float: """ Equation to solve to get d_cr """ s=rhom/rho denom_shields= (s-1)*GRAVITY*x ## en réalité denom/rho psi_obj = tau_obj/denom_shields/rho psi_cr=yadim(xadim(x,rhom,rho)) return psi_obj-psi_cr
# def _get_d_cr(tau_cr,rhom=2650,rho=RHO_PUREWATER): # dminabs = 1.e-6 # dmaxabs = .5 # d_cr = root_scalar(_d_cr,(tau_cr,rhom,rho,get_sadim,get_psi_cr),'bisect',bracket=[dminabs, dmaxabs]) # return d_cr
[docs] def get_d_cr(q:float, h:float, K:float, rhom:float=2650., rho:float=RHO_PUREWATER, method='brenth', which=2) -> list[float]: """ Diamètre critique d'emportement par : - Shields - Izbach :param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3] :param method : method to solve the equation (default 'brenth') :param which : which formula to use (default 2) -- see funcs = [(get_sadim,get_psi_cr),(get_dstar,get_psi_cr2),(get_dstar,get_psi_cr3)] """ if q==0.: return 0.,0. tau_cr = (q/K)**2 / h**(7/3) * rho * GRAVITY # rho*g*h*J dminabs = 1.e-100 dmaxabs = 20 funcs = [(get_sadim, get_psi_cr),(get_dstar, get_psi_cr2),(get_dstar, get_psi_cr3)] try: d_cr = root_scalar(_d_cr,(tau_cr,rhom,rho,funcs[which][0],funcs[which][1]),method,bracket=[dminabs, dmaxabs],rtol = 1e-2) return d_cr.root, izbach_d_cr(q,h,rhom,rho) except: izbach = izbach_d_cr(q,h,rhom,rho) return izbach,izbach
[docs] def get_settling_vel(d:float, rhom:float=2650., rho:float=RHO_PUREWATER) -> float: """ Vitesse de chute :param d : grain diameter [m] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3] """ dstar = get_dstar(d,rhom,rho) ws = KIN_VISCOSITY/d*(math.sqrt(25+1.2*dstar**2.)-5)**(3./2.) return ws
[docs] def get_Rouse(d:float, q:float, h:float, K:float, rhom:float=2650., rho:float=RHO_PUREWATER) -> float: """ Vitesse de chute :param d : grain diameter [m] :param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3] """ # tau_cr = (q/K)**2 / h**(7/3) * rho * GRAVITY # shear_vel = math.sqrt(tau_cr/rho) shear_vel = q/K / h**(7./6.)* math.sqrt(GRAVITY) ws = get_settling_vel(d,rhom,rho) # von Kármán constant k = 0.40 return ws/(k*shear_vel)
[docs] def _get_Rouse(d:float, q:float, h:float, K:float, rhom:float=2650., rho:float=RHO_PUREWATER, frac:float=50) -> float: """ Settling velocity function -- used in root_scalar :param d : grain diameter [m] :param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3] """ # tau_cr = (q/K)**2 / h**(7/3) * rho * GRAVITY # shear_vel = math.sqrt(tau_cr/rho) shear_vel = q/K / h**(7/6)* math.sqrt(GRAVITY) ws = get_settling_vel(d,rhom,rho) # von Kármán constant k = 0.40 denom = k*shear_vel if denom>0.: rouse = ws/(k*shear_vel) else: rouse = 0. if frac==50: return rouse-2.5 elif frac==100: return rouse-1.2
[docs] def get_transport_mode(d:float, q:float, h:float, K:float, rhom:float=2650., rho:float=RHO_PUREWATER): # -> BED_LOAD | SUSPENDED_LOAD_50 | SUSPENDED_LOAD_100 | WASH_LOAD: """ Transport mode return in [BED_LOAD, SUSPENDED_LOAD_50, SUSPENDED_LOAD_100, WASH_LOAD] :param d : grain diameter [m] :param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3] """ rouse = get_Rouse(d,q,h,K,rhom,rho) if rouse>=2.5: return BED_LOAD elif rouse>=1.2: return SUSPENDED_LOAD_50 elif rouse>=0.8: return SUSPENDED_LOAD_100 else: return WASH_LOAD
[docs] def get_d_cr_susp(q:float, h:float, K:float, rhom:float=2650., rho:float=RHO_PUREWATER, method='brenth', which=50) -> float: """ Diamètre critique d'emportement par suspension à 50% --> cf Rouse 1.2 :param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3] """ if q==0.: return 0. dminabs = 1.e-100 dmaxabs = 20 try: d_cr = root_scalar(_get_Rouse,(q,h,K,rhom,rho,which),method,bracket=[dminabs, dmaxabs],rtol = 1e-2) return d_cr.root except: return 0.
[docs] def shieldsdia_sadim(s_psicr=None, dstar_psicr=None, rhom=2650., rho=RHO_PUREWATER, figax=None) -> tuple[plt.Figure,plt.Axes]: """ Plot Shields diagram with sadim""" smax = 1000 rangoS = np.arange(0.1,smax,0.1) psicri = np.asarray([get_psi_cr(curx) for curx in rangoS]) psicri2 = np.asarray([get_psi_cr2(sadim2dstar(curx)) for curx in rangoS]) psicri3 = np.asarray([get_psi_cr3(sadim2dstar(curx)) for curx in rangoS]) if figax is None: fig, ax = plt.subplots(1,1) ax.set_title('Modified Shields diagram') else: fig, ax = figax ax.plot(rangoS,psicri,linewidth=4,color=[0,0,.8],label='Madsen and Grant, 1976') ax.plot(rangoS,psicri2,linewidth=4,color=[0.8,0,.8],label='Telemac-Mascaret, 2022') ax.plot(rangoS,psicri3,linewidth=4,color=[0.5,0,.8],label='Yalin and Ferreira da Silva, 2001') ylabel=r'$ {\theta}_{cr} = \frac{u^*}{g \left( s-1 \right) d}$' xlabel = r'$ {S^*} = d^{3/2} \frac{ {\left( \left( s-1 \right) g \right)}^{1/2}}{4 \nu} $' ax.set_ylabel('Critical shields '+ylabel+' (dimensionless)') ax.set_xlabel('Sediment - fluid parameter '+xlabel+ ' (dimensionless)') if s_psicr is not None: S = s_psicr[0] psicr = s_psicr[1] x = [S,0.1,S] y = [psicr,psicr,.01] ax.scatter(x,y,50,c='red') ax.plot([0.8, 0.8],[0.01,1],color=[0.75,0.75,0.75],linestyle=':') ax.text(S+.005,psicr+0.005,'$S^*$') if dstar_psicr is not None: S = dstar2sadim(dstar_psicr[0]) psicr = dstar_psicr[1] x = [S,0.1,S] y = [psicr,psicr,.01] ax.scatter(x,y,50,c='red') ax.plot([0.8, 0.8],[0.01,1],color=[0.75,0.75,0.75],linestyle=':') ax.text(S+.005,psicr+0.005,'$S^*$') ax.set_xlim([.1,smax]) ax.set_ylim([0.01,1]) ax.set_xscale('log') ax.set_yscale('log') ax.grid(True,'both',axis='both') ax.legend() # plt.show() return fig,ax
[docs] def shieldsdia_dstar(s_psicr=None, dstar_psicr=None, rhom=2650., rho=RHO_PUREWATER, figax=None) -> tuple[plt.Figure,plt.Axes]: """ Plot Shields diagram with dstar""" smax = 1000 d_stars = np.arange(0.1,smax,0.1) diams = np.asarray([get_d_from_dstar(curx) for curx in d_stars]) rangoS = np.asarray([get_sadim(curx) for curx in diams]) psicri = np.asarray([get_psi_cr(curx) for curx in rangoS]) psicri2 = np.asarray([get_psi_cr2(curx) for curx in d_stars]) psicri3 = np.asarray([get_psi_cr3(curx) for curx in d_stars]) if figax is None: fig, ax = plt.subplots(1,1) ax.set_title('Modified Shields diagram') else: fig, ax = figax ax.plot(d_stars,psicri,linewidth=4,color=[0,0,.8],label='Madsen and Grant, 1976') ax.plot(d_stars,psicri2,linewidth=4,color=[0.8,0,.8],label='Telemac-Mascaret, 2022') ax.plot(d_stars,psicri3,linewidth=4,color=[0.5,0,.8],label='Yalin and Ferreira da Silva, 2001') ylabel=r'$ {\theta}_{cr} = \frac{u^*}{g \left( s-1 \right) d}$' xlabel = r'$ {D^*} = d \left( \frac{\rho_s g}{\rho \nu^2} \right) ^{1/3} $' ax.set_ylabel('Critical shields '+ylabel+' (dimensionless)') ax.set_xlabel('Sediment - fluid parameter '+xlabel+ ' (dimensionless)') if s_psicr is not None: S = s_psicr[0] psicr = s_psicr[1] S = sadim2dstar(S) x = [S,0.1,S] y = [psicr,psicr,.01] ax.scatter(x,y,50,c='red') ax.plot([0.8, 0.8],[0.01,1],color=[0.75,0.75,0.75],linestyle=':') ax.text(S+.005,psicr+0.005,'$S^*$') if dstar_psicr is not None: S = dstar_psicr[0] psicr = dstar_psicr[1] x = [S,0.1,S] y = [psicr,psicr,.01] ax.scatter(x,y,50,c='red') ax.plot([0.8, 0.8],[0.01,1],color=[0.75,0.75,0.75],linestyle=':') ax.text(S+.005,psicr+0.005,'$S^*$') ax.set_xlim([.1,smax]) ax.set_ylim([0.01,1]) ax.set_xscale('log') ax.set_yscale('log') ax.grid(True,'both',axis='both') ax.legend() # plt.show() return fig,ax
[docs] def shieldsdia_dim(figax=None) -> tuple[plt.Figure,plt.Axes]: """ Plot Shields diagram with dimensional values""" smax=1e6 rangoS = np.concatenate([np.arange(0.1,300,0.1),np.arange(300.,smax,5.)]) psicri = np.asarray([get_psi_cr(curx) for curx in rangoS]) psicri2 = np.asarray([get_psi_cr2(sadim2dstar(curx)) for curx in rangoS]) psicri3 = np.asarray([get_psi_cr3(sadim2dstar(curx)) for curx in rangoS]) if figax is None: fig, ax = plt.subplots(1,1) ax.set_title('Modified Shields diagram') else: fig, ax = figax d = get_d_from_sadim(rangoS) tau = [get_tau_from_psiadim(psi,curd) for psi,curd in zip(psicri,d)] tau2 = [get_tau_from_psiadim(psi,curd) for psi,curd in zip(psicri2,d)] tau3 = [get_tau_from_psiadim(psi,curd) for psi,curd in zip(psicri3,d)] ax.plot(d,tau,linewidth=4,color=[0,0,.8],label='Madsen and Grant, 1976') ax.plot(d,tau2,linewidth=4,color=[0.8,0,.8],label='Telemac-Mascaret, 2022') ax.plot(d,tau3,linewidth=4,color=[0.5,0,.8],label='Yalin and Ferreira da Silva, 2001') ax.set_ylabel('Critical shear stress [Pa]') ax.set_xlabel('Sediment diameter [m]') ax.set_xlim([np.min(d),np.max(d)]) ax.set_ylim([np.min(tau),np.max(tau)]) ax.set_xscale('log') ax.set_yscale('log') ax.grid(True,'both',axis='both') ax.legend() # plt.show() return fig,ax
[docs] def get_friction_slope_2D_Manning(q:float, h:float, n:float) -> float: """ Compute friction slope j for 2D flow with Manning/Strickler friction law :param q : discharge [m3/s] :param h : water depth [m] :param n : Manning friction coefficient [m-1/3.s] """ denom = h**(4./3.) if denom > 0.: j = (q/h * n)**2.0 / denom else: j = 0. return j
[docs] def get_shear_velocity_2D_Manning(q:float, h:float, n:float) -> float: """ Compute shear velocity u_* for 2D flow with Manning/Strickler friction law :param j : friction slope [-] :param h : water depth [m] :param q : discharge [m3/s] :param n : Manning friction coefficient [m-1/3.s] """ j = get_friction_slope_2D_Manning(q,h,n) ushear = (h*j*GRAVITY)**0.5 return ushear
[docs] def get_Shields_2D_Manning(s:float, d:float, q:float, h:float, n:float) -> float: """ Compute Shields dimensionless parameter for 2D flow with Manning/Strickler friction law :param s : sediment density / water density [-] :param d : sediment diameter [m] :param q : discharge [m3/s] :param h : water depth [m] :param n : Manning friction coefficient [m-1/3.s] See also get_Shields_2D_Strickler """ # calcul de terme de pente de frottement # j = (q/h)**2.0 / K**2. / h**(4./3.) j = get_friction_slope_2D_Manning(q,h,n) shields = j*h / (d*(s-1)) return shields
[docs] def get_Shields_2D_Strickler(s:float, d:float, q:float, h:float, K:float) -> float: """ Compute Shields dimensionless parameter for 2D flow with Manning/Strickler friction law :param s : sediment density / water density [-] :param d : sediment diameter [m] :param q : discharge [m3/s] :param h : water depth [m] :param K : Strickler friction coefficient [m1/3/s] See also get_Shields_2D_Manning """ # calcul de terme de pente de frottement n = 1./K return get_Shields_2D_Manning(s, d, q, h, n)
[docs] def izbach_d_cr(q:float, h:float, rhom:float=2650, rho:float=RHO_PUREWATER, method='ridder') -> float: """ https://en.wikipedia.org/wiki/Izbash_formula u_c/ ((s-1) * g * d)**.5 = 1.7 avec : (s-1) = (rho_m - rho) / rho u_c = 85% u_moyen) --> d = u_c**2 / (s * g) / 1.7**2 --> d = (0.85 * q/h)**2 / (s * g) / 1.7**2 :param q : discharge [m3/s] :param h : water depth [m] :param rhom : sediment density [kg/m3] :param rho : water density [kg/m3] :param method : method to solve the equation (default 'ridder') """ s = rhom/rho # (0.85 * q/h)**2. / ((s-1.) * GRAVITY) / 1.7**2. # <=> 0.7 * (0.85*q/h)**2. / (2 * GRAVITY) / (s-1.) # <=> (q/h)**2. / (2 * GRAVITY) / (s-1.) / .86**2 return (q/h)**2. / (2 * GRAVITY) / (s-1.) / 1.2**2
## Portage de WOLF2D - Fortran pour Barr-Bathurst # def get_Shields_2D_pw(s:float, d:float, q_abs:float, h:float, k_rough:float, which_law = 'Manning'): # """ # """ # # calcul de terme de pente de frottement # if which_law == 'Manning': # j = (q_abs/h)**2.0 / k_rough**2. / h**(4./3.) # elif which_law == 'Barr_Bathurst': # k_sur_h = k_rough/(4.0*h) # Reynolds = 4.0 * q_abs /KIN_VISCOSITY # u*4h/nu == 4q/nu # j = f_barr_bathurst(k_sur_h,Reynolds)/(4.0*h) * (q_abs/h)**2.0/2.0/GRAVITY # shields = j*h / (d*(s-1)) # # shields = f/4 * u**2 /2 /g /(d * (rho_s-rho_w) / rho_w) # # shields = tau / (rho_s - rho_w) /g /d # # tau = f/8 * rho_w * u**2 # return shields # def get_effective_d_2D(s:float, theta_cr:float, q_abs:float, h:float, k_rough:float): # """ # Calcul du diamètre de grain emporté par une approche basée sur une tension efficace # Portage du code de calcul de WOLF2D # @authors : Pierre Archambeau (2022) # """ # #if which_friction_law#=rough_Barr_Bathurst: # ##les autres lois de frottement ne sont pas implémentées mais aucune difficulté particulière # ##ne devraient empêcher cela # my_exp = [0.0, 0.10, 0.20, 0.30, 0.40, 0.420, 0.440, 0.460, 0.480, # 0.50, 0.52, 0.54, 0.56, 0.58, # 0.6, 0.62, 0.64, 0.66, 0.68, # 0.7, 0.71, 0.72, 0.73, 0.74, 0.75] # ##calcul du coefficient de frottement (point de vue de l'écoulement) # u_abs = q_abs/h # Reynolds = q_abs * 4 / KIN_VISCOSITY # k_sur_h = k_rough/(4*h) # f_flow = f_barr_bathurst(k_sur_h,Reynolds) # #valeur initiale (pas de tension efficace) # exp = my_exp[0] # d = f_flow**(1-exp)*u_abs**2/(8*(s-1)*GRAVITY*theta_cr) # #boucle pour approcher les exposants requis # for cur_exponent in range(1,25): # exp = my_exp[cur_exponent] # #partie constante du rapport d = lamda'^(3/4)*lambda^(1/4)*U^2/8/(s-1)/g/theta_cr # cst = f_flow**(1-exp)*u_abs**2/(8*(s-1)*GRAVITY*theta_cr) # #boucle pour converger sur un diamètre qui respecte l'égalité # k_sur_h = d/(4*h) # f_grain = f_barr_bathurst(k_sur_h,Reynolds) # f_obj = d-f_grain**exp*cst # nb_ite = 0 # while abs(f_obj) > 1.e-6 and nb_ite < 20: # #calcul de la dérivée numérique # k_sur_h = (d+1.e-6)/(4*h) # f_pert1 = f_barr_bathurst(k_sur_h,Reynolds) # k_sur_h = (d-1.e-6)/(4*h) # f_pert2 = f_barr_bathurst(k_sur_h,Reynolds) # dfdd = 1-cst*exp*f_grain**(exp-1)*(f_pert1-f_pert2)/2.e-6 # frac = f_obj/dfdd # #modifiation de d # if abs(frac) > 0.5*d: # if frac>0: # frac = 0.5*d # else: # frac = -0.5*d # d = d - frac # #calcul de la nouvelle donction objectif # k_sur_h = d/(4*h) # f_grain = f_barr_bathurst(k_sur_h,Reynolds) # f_obj = d-f_grain**exp*cst # nb_ite = nb_ite + 1 # return d