Source code for wolfhece.PyPalette

"""
Author: HECE - University of Liege, Pierre Archambeau
Date: 2024

Copyright (c) 2024 University of Liege. All rights reserved.

This script and its content are protected by copyright law. Unauthorized
copying or distribution of this file, via any medium, is strictly prohibited.
"""

from matplotlib.cm import ScalarMappable
from matplotlib.figure import Figure
from matplotlib.transforms import Bbox
import wx
import numpy as np
import numpy.ma as ma
from bisect import bisect_left
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap, Normalize, ListedColormap, BoundaryNorm
from collections import OrderedDict
import typing
import io
import logging

from .PyTranslate import _
from .CpGrid import CpGrid
from .PyVertex import getRGBfromI, getIfromRGB


[docs] class wolfpalette(wx.Frame, LinearSegmentedColormap): """ Palette de couleurs basée sur l'objet "LinearSegmentedColormap" de Matplotlib (Colormap objects based on lookup tables using linear segments) """
[docs] filename: str
[docs] nb: int
[docs] colors: np.array
[docs] colorsflt: np.array
[docs] colorsuint8: np.array
def __init__(self, parent=None, title=_('Colormap'), w=100, h=500, nseg=1024): self.filename = '' self.nb = 0 self.values = None self.colormin = np.array([1., 1., 1., 1.]) self.colormax = np.array([0, 0, 0, 1.]) self.nseg = nseg self.automatic = True self.interval_cst = False self.wx_exists = wx.App.Get() is not None # Appel à l'initialisation d'un frame général if (self.wx_exists): wx.Frame.__init__(self, parent, title=title, size=(w, h), style=wx.DEFAULT_FRAME_STYLE) LinearSegmentedColormap.__init__(self, 'wolf', {}, nseg) self.set_bounds() @property
[docs] def colormin_uint8(self): return self.colormin.astype(np.uint8)*255
@property
[docs] def colormax_uint8(self): return self.colormax.astype(np.uint8)*255
[docs] def get_colors_f32(self): colors = self.colorsflt[:, :3].astype(np.float32) return colors
[docs] def get_colors_uint8(self): colors = self.colorsflt[:, :3].astype(np.uint8) * 255 return colors
[docs] def set_bounds(self): self.set_under(tuple(self.colormin)) self.set_over(tuple(self.colormax))
[docs] def get_rgba(self, x: np.ndarray): """Récupération de la couleur en fonction de la valeur x""" dval = self.values[-1]-self.values[0] if dval == 0.: dval = 1. xloc = (x-self.values[0])/dval if self.interval_cst: rgba = np.ones((xloc.shape[0], xloc.shape[1], 4), dtype=np.uint8) ij = np.where(xloc < 0.) rgba[ij[0], ij[1]] = self.colormin_uint8 ij = np.where(xloc >= 1.) rgba[ij[0], ij[1]] = self.colormax_uint8 for i in range(self.nb-1): val1 = (self.values[i]-self.values[0])/dval val2 = (self.values[i+1]-self.values[0])/dval # c1 = self.colorsflt[i] c1 = self.colorsuint8[i] ij = np.where((xloc >= val1) & (xloc < val2)) rgba[ij[0], ij[1]] = c1 return rgba else: return self(xloc, bytes=True)
[docs] def export_palette_matplotlib(self, name): cmaps = OrderedDict() cmaps['Perceptually Uniform Sequential'] = ['viridis', 'plasma', 'inferno', 'magma', 'cividis'] cmaps['Sequential'] = ['Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn'] cmaps['Sequential (2)'] = ['binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper'] cmaps['Diverging'] = ['PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic'] cmaps['Cyclic'] = ['twilight', 'twilight_shifted', 'hsv'] cmaps['Qualitative'] = ['Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c'] cmaps['Miscellaneous'] = ['flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'] for cmap_category, cmap_list in cmaps.items(): if (name in cmaps[cmap_category]): self = plt.get_cmap(name) self.nb = len(self._segmentdata['blue']) self.values = np.linspace(0., 1., self.nb, dtype=np.float64) self.colorsflt = np.zeros((self.nb, 4), dtype=np.float64) for i in range(self.nb): self.colorsflt[i, 0] = self._segmentdata['red'][i][2] self.colorsflt[i, 1] = self._segmentdata['green'][i][2] self.colorsflt[i, 2] = self._segmentdata['blue'][i][2] self.colorsflt[i, 3] = self._segmentdata['alpha'][i][2] test = 1 break else: test = 1 return self.nb, self.values, self._segmentdata, self.colorsflt
[docs] def distribute_values(self, minval: float = -99999, maxval: float = -99999, step=0, wx_permitted=True): """ Distribution des valeurs de la palette :param minval: valeur minimale :param maxval: valeur maximale :param step: pas de distribution Si le pas est fourni, il prend le dessus sur la valeur maximale. """ if self.wx_exists and wx_permitted: if minval == -99999: dlg = wx.TextEntryDialog(None, _('Minimum value'), value=str(self.values[0])) ret = dlg.ShowModal() self.values[0] = dlg.GetValue() dlg.Destroy() else: self.values[0] = minval if maxval == -99999 and step == 0: dlg = wx.MessageDialog(None, _('Would you like to set the incremental step value ?'), style=wx.YES_NO | wx.YES_DEFAULT) ret = dlg.ShowModal() dlg.Destroy if ret == wx.ID_YES: dlg = wx.TextEntryDialog(None, _('Step value'), value='1') ret = dlg.ShowModal() step = float(dlg.GetValue()) dlg.Destroy() else: dlg = wx.TextEntryDialog(None, _('Maximum value'), value=str(self.values[-1])) ret = dlg.ShowModal() self.values[-1] = float(dlg.GetValue()) dlg.Destroy() elif maxval != -99999: self.values[-1] = maxval else: if minval != -99999: self.values[0] = minval if maxval != -99999: self.values[-1] = maxval if step == 0: self.values = np.linspace(self.values[0], self.values[-1], num=self.nb, endpoint=True, dtype=np.float64)[0:self.nb] else: self.values = np.arange(self.values[0], self.values[0]+(self.nb)*step, step, dtype=np.float64)[0:self.nb] self.fill_segmentdata()
[docs] def export_image(self, fn='', h_or_v: typing.Literal['h', 'v', ''] = '', figax=None): """ Export image from colormap :param : fn : filepath or io.BytesIO() :param : h_or_v : configuration to save 'h' = horizontal, 'v' = vertical, '' = both """ if self.values is None: logging.warning('No values in palette - Nothing to do !') return None, None if fn == '': file = wx.FileDialog(None, "Choose .pal file", wildcard="png (*.png)|*.png|all (*.*)|*.*", style=wx.FD_SAVE) if file.ShowModal() == wx.ID_CANCEL: return else: # récupération du nom de fichier avec chemin d'accès fn = file.GetPath() if h_or_v == 'v': if figax is None: fig, ax = plt.subplots(1, 1) else: fig, ax = figax if self.interval_cst: discrete_cmap = ListedColormap(self.colorsflt[:, :3]) colorbar = plt.colorbar(ScalarMappable(BoundaryNorm(self.values, ncolors=self.nb-1), cmap=discrete_cmap), cax=ax, orientation='vertical', extend='both', aspect=20, spacing='proportional', ticks=self.values, format='%.3f') else: plt.colorbar(ScalarMappable(Normalize(self.values[0], self.values[-1]), cmap=self), cax=ax, orientation='vertical', extend='both', aspect=20, spacing='proportional', ticks=self.values, format='%.3f') plt.tick_params(labelsize=14) if figax is None: fig.set_size_inches((2, 10)) fig.tight_layout() if fn != '' and fn is not None: plt.savefig(fn, format='png') # plt.savefig(fn,bbox_inches='tight', format='png') elif h_or_v == 'h': if figax is None: fig, ax = plt.subplots(1, 1) else: fig, ax = figax if self.interval_cst: discrete_cmap = ListedColormap(self.colorsflt[:, :3]) colorbar = plt.colorbar(ScalarMappable(BoundaryNorm(self.values, ncolors=self.nb-1), cmap=discrete_cmap), cax=ax, orientation='horizontal', extend='both', aspect=20, spacing='proportional', ticks=self.values, format='%.3f') else: plt.colorbar(ScalarMappable(Normalize(self.values[0], self.values[-1]), cmap=self), cax=ax, orientation='horizontal', extend='both', spacing='proportional', ticks=self.values, format='%.3f') plt.tick_params(labelsize=14, rotation=45) if figax is None: fig.set_size_inches((2, 10)) fig.tight_layout() if fn != '' and fn is not None: plt.savefig(fn, format='png') # plt.savefig(fn,bbox_inches='tight', format='png') else: if isinstance(fn, io.BytesIO): logging.warning('Bad type for "fn" - Nothing to do !') return if figax is None: fig, ax = plt.subplots(1, 1) else: fig, ax = figax if self.interval_cst: discrete_cmap = ListedColormap(self.colorsflt[:, :3]) colorbar = plt.colorbar(ScalarMappable(BoundaryNorm(self.values, ncolors=self.nb-1), cmap=discrete_cmap), cax=ax, orientation='vertical', extend='both', aspect=20, spacing='proportional', ticks=self.values, format='%.3f') else: plt.colorbar(ScalarMappable(Normalize(self.values[0], self.values[-1]), cmap=self), cax=ax, orientation='vertical', extend='both', spacing='proportional', ticks=self.values, format='%.3f') plt.tick_params(labelsize=14) fig.set_size_inches((2, 10)) fig.tight_layout() if fn != '' and fn is not None: plt.savefig(fn[:-4]+'_v.png', format='png') if figax is None: fig, ax = plt.subplots(1, 1) else: fig, ax = figax if self.interval_cst: discrete_cmap = ListedColormap(self.colorsflt[:, :3]) colorbar = plt.colorbar(ScalarMappable(BoundaryNorm(self.values, ncolors=self.nb-1), cmap=discrete_cmap), cax=ax, orientation='horizontal', extend='both', aspect=20, spacing='proportional', ticks=self.values, format='%.3f') else: plt.colorbar(ScalarMappable(Normalize(self.values[0], self.values[-1]), cmap=self), cax=ax, orientation='horizontal', extend='both', spacing='proportional', ticks=self.values, format='%.3f') plt.tick_params(labelsize=14, rotation=45) fig.set_size_inches((10, 2)) fig.tight_layout() if fn != '' and fn is not None: plt.savefig(fn[:-4]+'_h.png', format='png') return fig, ax
[docs] def plot(self, fig: Figure, ax: plt.Axes): """ Affichage de la palette de couleurs """ gradient = np.linspace(0, 1, 256) gradient = np.vstack((gradient, gradient)) pos = [] txt = [] dval = (self.values[-1]-self.values[0]) if dval == 0.: dval = 1. if self.interval_cst: discrete_cmap = ListedColormap(self.colorsflt[:, :3]) ax.imshow(gradient, aspect='auto', cmap=discrete_cmap) for idx, curval in enumerate(self.values): pos.append(idx/self.nb*256.) txt.append("{0:.3f}".format(curval)) else: ax.imshow(gradient, aspect='auto', cmap=self) for curval in self.values: pos.append((curval-self.values[0])/dval*256.) txt.append("{0:.3f}".format(curval)) ax.set_yticklabels([]) ax.set_xticks(pos) ax.set_xticklabels(txt, rotation=30, fontsize=6)
[docs] def fillgrid(self, gridto: CpGrid): """ Remplissage d'une grille avec les valeurs de la palette """ gridto.SetColLabelValue(0, 'Value') gridto.SetColLabelValue(1, 'R') gridto.SetColLabelValue(2, 'G') gridto.SetColLabelValue(3, 'B') nb = gridto.GetNumberRows() if len(self.values)-nb > 0: gridto.AppendRows(len(self.values)-nb) k = 0 for curv, rgba in zip(self.values, self.colors): gridto.SetCellValue(k, 0, str(curv)) gridto.SetCellValue(k, 1, str(rgba[0])) gridto.SetCellValue(k, 2, str(rgba[1])) gridto.SetCellValue(k, 3, str(rgba[2])) k += 1 nb = gridto.GetNumberRows() while k < nb: gridto.SetCellValue(k, 0, '') gridto.SetCellValue(k, 1, '') gridto.SetCellValue(k, 2, '') gridto.SetCellValue(k, 3, '') k += 1
[docs] def updatefromgrid(self, gridfrom: CpGrid): """ Mise à jour de la palette sur base d'une grille """ nbl = gridfrom.GetNumberRows() for i in range(nbl): if gridfrom.GetCellValue(i, 0) == '': nbl = i-1 break if i < self.nb: self.nb = i self.values = self.values[0:i] self.colors = self.colors[0:i, :] else: self.nb = i oldvalues = self.values oldcolors = self.colors self.values = np.zeros(self.nb, dtype=np.float64) self.colors = np.zeros((self.nb, 4), dtype=int) self.values[0:len(oldvalues)] = oldvalues self.colors[0:len(oldcolors), :] = oldcolors update = False for k in range(self.nb): update = update or self.values[k] != float(gridfrom.GetCellValue(k, 0)) update = update or self.colors[k, 0] != float(gridfrom.GetCellValue(k, 1)) update = update or self.colors[k, 1] != float(gridfrom.GetCellValue(k, 2)) update = update or self.colors[k, 2] != float(gridfrom.GetCellValue(k, 3)) self.values[k] = float(gridfrom.GetCellValue(k, 0)) self.colors[k, 0] = int(gridfrom.GetCellValue(k, 1)) self.colors[k, 1] = int(gridfrom.GetCellValue(k, 2)) self.colors[k, 2] = int(gridfrom.GetCellValue(k, 3)) self.fill_segmentdata() return update
[docs] def updatefrompalette(self, srcpal): """ Mise à jour de la palette sur base d'une autre On copie les valeurs, on ne pointe pas l'objet """ for k in range(len(srcpal.values)): self.values[k] = srcpal.values[k] self.fill_segmentdata()
[docs] def lookupcolor(self, x): if x < self.values[0]: return wx.Colour(self.colormin) if x > self.values[-1]: return wx.Colour(self.colormax) i = bisect_left(self.values, x) k = (x - self.values[i-1])/(self.values[i] - self.values[i-1]) r = int(k*(float(self.colors[i, 0]-self.colors[i-1, 0]))) + self.colors[i-1, 0] g = int(k*(float(self.colors[i, 1]-self.colors[i-1, 1]))) + self.colors[i-1, 1] b = int(k*(float(self.colors[i, 2]-self.colors[i-1, 2]))) + self.colors[i-1, 2] a = int(k*(float(self.colors[i, 3]-self.colors[i-1, 3]))) + self.colors[i-1, 3] y = wx.Colour(r, g, b, a) return y
[docs] def lookupcolorflt(self, x): if x < self.values[0]: return wx.Colour(self.colormin) if x > self.values[-1]: return wx.Colour(self.colormax) i = bisect_left(self.values, x) k = (x - self.values[i-1])/(self.values[i] - self.values[i-1]) r = k*(self.colorsflt[i, 0]-self.colorsflt[i-1, 0]) + self.colorsflt[i-1, 0] g = k*(self.colorsflt[i, 1]-self.colorsflt[i-1, 1]) + self.colorsflt[i-1, 1] b = k*(self.colorsflt[i, 2]-self.colorsflt[i-1, 2]) + self.colorsflt[i-1, 2] a = k*(self.colorsflt[i, 3]-self.colorsflt[i-1, 3]) + self.colorsflt[i-1, 3] y = [r, g, b, a] return y
[docs] def lookupcolorrgb(self, x): if x < self.values[0]: return wx.Colour(self.colormin) if x > self.values[-1]: return wx.Colour(self.colormax) i = bisect_left(self.values, x) k = (x - self.values[i-1])/(self.values[i] - self.values[i-1]) r = int(k*(float(self.colors[i, 0]-self.colors[i-1, 0]))) + self.colors[i-1, 0] g = int(k*(float(self.colors[i, 1]-self.colors[i-1, 1]))) + self.colors[i-1, 1] b = int(k*(float(self.colors[i, 2]-self.colors[i-1, 2]))) + self.colors[i-1, 2] a = int(k*(float(self.colors[i, 3]-self.colors[i-1, 3]))) + self.colors[i-1, 3] return r, g, b, a
[docs] def default16(self): """Palette 16 coulrurs par défaut dans WOLF""" self.nb = 16 self.values = np.linspace(0., 1., 16, dtype=np.float64) self.colors = np.zeros((self.nb, 4), dtype=int) self.colorsflt = np.zeros((self.nb, 4), dtype=np.float64) self.colors[0, :] = [128, 255, 255, 255] self.colors[1, :] = [89, 172, 255, 255] self.colors[2, :] = [72, 72, 255, 255] self.colors[3, :] = [0, 0, 255, 255] self.colors[4, :] = [0, 128, 0, 255] self.colors[5, :] = [0, 221, 55, 255] self.colors[6, :] = [128, 255, 128, 255] self.colors[7, :] = [255, 255, 0, 255] self.colors[8, :] = [255, 128, 0, 255] self.colors[9, :] = [235, 174, 63, 255] self.colors[10, :] = [255, 0, 0, 255] self.colors[11, :] = [209, 71, 12, 255] self.colors[12, :] = [128, 0, 0, 255] self.colors[13, :] = [185, 0, 0, 255] self.colors[14, :] = [111, 111, 111, 255] self.colors[15, :] = [192, 192, 192, 255] self.fill_segmentdata()
[docs] def set_values_colors(self, values: typing.Union[list[float], np.ndarray], colors: typing.Union[list[tuple[int]], np.ndarray]): """ Mise à jour des valeurs et couleurs de la palette """ assert len(values) == len(colors), "Length of values and colors must be the same" assert len(values) > 1, "At least 2 values are required" assert len(colors[0]) in [3, 4], "Colors must be in RGB or RGBA format" self.nb = len(values) self.values = np.asarray(values, dtype=np.float64) self.colors = np.zeros((self.nb, 4), dtype=int) self.colorsflt = np.zeros((self.nb, 4), dtype=np.float64) if isinstance(colors, list): if len(colors[0]) == 3: for curcol in range(self.nb): self.colors[curcol, 0] = colors[curcol][0] self.colors[curcol, 1] = colors[curcol][1] self.colors[curcol, 2] = colors[curcol][2] self.colors[curcol, 3] = 255 elif len(colors[0]) == 4: for curcol in range(self.nb): self.colors[curcol, 0] = colors[curcol][0] self.colors[curcol, 1] = colors[curcol][1] self.colors[curcol, 2] = colors[curcol][2] self.colors[curcol, 3] = colors[curcol][3] elif isinstance(colors, np.ndarray): if colors.shape[1] == 3: for curcol in range(self.nb): self.colors[curcol, 0] = colors[curcol, 0] self.colors[curcol, 1] = colors[curcol, 1] self.colors[curcol, 2] = colors[curcol, 2] self.colors[curcol, 3] = 255 elif colors.shape[1] == 4: for curcol in range(self.nb): self.colors[curcol, 0] = colors[curcol, 0] self.colors[curcol, 1] = colors[curcol, 1] self.colors[curcol, 2] = colors[curcol, 2] self.colors[curcol, 3] = colors[curcol, 3] self.fill_segmentdata()
[docs] def defaultgray(self): """Palette grise par défaut dans WOLF""" self.nb = 3 self.values = np.asarray([0., 0.5, 1.], dtype=np.float64) self.colors = np.asarray([[0, 0, 0, 255], [128, 128, 128, 255], [255, 255, 255, 255]], dtype=np.int32) # self.nb = 11 # self.values = np.asarray([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.], dtype=np.float64) # self.colors = np.asarray([[0, 0, 0, 255], # [22, 22, 22, 255], # [44, 44, 44, 255], # [66, 66, 66, 255], # [88, 88, 88, 255], # [110, 110, 110, 255], # [132, 132, 132, 255], # [154, 154, 154, 255], # [176, 176, 176, 255], # [198, 198, 198, 255], # [255, 255, 255, 255]], dtype=np.int32) self.fill_segmentdata()
[docs] def fill_segmentdata(self): """Mise à jour de la palatte de couleurs""" self.colorsflt = self.colors.astype(float)/255. self.colorsuint8 = self.colors.astype(np.uint8) dval = self.values[-1]-self.values[0] normval = np.ones([len(self.values)]) if dval > 0.: normval = (self.values-self.values[0])/(self.values[-1]-self.values[0]) normval[0] = 0. normval[-1] = 1. segmentdata = {"red": np.column_stack([normval, self.colorsflt[:, 0], self.colorsflt[:, 0]]), "green": np.column_stack([normval, self.colorsflt[:, 1], self.colorsflt[:, 1]]), "blue": np.column_stack([normval, self.colorsflt[:, 2], self.colorsflt[:, 2]]), "alpha": np.column_stack([normval, self.colorsflt[:, 3], self.colorsflt[:, 3]])} LinearSegmentedColormap.__init__(self, 'wolf', segmentdata, self.nseg)
[docs] def readfile(self, *args): """Lecture de la palette sur base d'un fichier WOLF .pal""" if len(args) > 0: # s'il y a un argument on le prend tel quel self.filename = str(args[0]) else: if self.wx_exists: # ouverture d'une boîte de dialogue file = wx.FileDialog(None, "Choose .pal file", wildcard="pal (*.pal)|*.pal|all (*.*)|*.*") if file.ShowModal() == wx.ID_CANCEL: file.Destroy() return else: # récuparétaion du nom de fichier avec chemin d'accès self.filename = file.GetPath() file.Destroy() else: return # lecture du contenu with open(self.filename, 'r') as myfile: # split des lignes --> récupération des infos sans '\n' en fin de ligne # différent de .readlines() qui lui ne supprime pas les '\n' mypallines = myfile.read().splitlines() myfile.close() self.nb = int(mypallines[0]) self.values = np.zeros(self.nb, dtype=np.float64) self.colors = np.zeros((self.nb, 4), dtype=int) for i in range(self.nb): self.values[i] = mypallines[i*4+1] self.colors[i, 0] = mypallines[i*4+2] self.colors[i, 1] = mypallines[i*4+3] self.colors[i, 2] = mypallines[i*4+4] self.colors[i, 3] = 255 self.fill_segmentdata()
[docs] def savefile(self, *args): """Lecture de la palette sur base d'un fichier WOLF .pal""" if len(args) > 0: # s'il y a un argument on le prend tel quel fn = str(args[0]) else: # ouverture d'une boîte de dialogue file = wx.FileDialog(None, "Choose .pal file", wildcard="pal (*.pal)|*.pal|all (*.*)|*.*", style=wx.FD_SAVE) if file.ShowModal() == wx.ID_CANCEL: return else: # récuparétaion du nom de fichier avec chemin d'accès fn = file.GetPath() self.filename = fn # lecture du contenu with open(self.filename, 'w') as myfile: # split des lignes --> récupération des infos sans '\n' en fin de ligne # différent de .readlines() qui lui ne supprime pas les '\n' myfile.write(str(self.nb)+'\n') for i in range(self.nb): myfile.write(str(self.values[i])+'\n') myfile.write(str(self.colors[i, 0])+'\n') myfile.write(str(self.colors[i, 1])+'\n') myfile.write(str(self.colors[i, 2])+'\n')
[docs] def isopop(self, array: ma.masked_array, nbnotnull: int = 99999): """Remplissage des valeurs de palette sur base d'une équirépartition de valeurs""" sortarray = array.flatten(order='F') idx_nan = np.where(np.isnan(sortarray)) if idx_nan[0].size > 0: sortarray = np.delete(sortarray, idx_nan) nbnotnull -= idx_nan[0].size logging.warning('NaN values found in array - removed from palette') sortarray.sort(axis=-1) # valeurs min et max if nbnotnull == 0: self.values[0] = 0 self.values[1:] = 1 else: nbnotnull = min(nbnotnull, sortarray.shape[0]) self.values[0] = sortarray[0] if (nbnotnull == 99999): self.values[-1] = sortarray[-1] nb = sortarray.count() else: self.values[-1] = sortarray[nbnotnull-1] nb = nbnotnull interv = int(nb / (self.nb-1)) if interv == 0: self.values[:] = self.values[-1] self.values[0] = self.values[-1]-1. else: for cur in range(1, self.nb-1): self.values[cur] = sortarray[cur * interv] self.fill_segmentdata()
[docs] def defaultgray_minmax(self, array: ma.masked_array, nbnotnull=99999): """Remplissage des valeurs de palette sur base d'une équirépartition de valeurs""" self.nb = 2 self.values = np.asarray([np.min(array), np.max(array)], dtype=np.float64) self.colors = np.asarray([[0, 0, 0, 255], [255, 255, 255, 255]], dtype=np.int32) self.colorsflt = np.asarray([[0., 0., 0., 1.], [1., 1., 1., 1.]], dtype=np.float64) self.fill_segmentdata()
[docs] def defaultblue_minmax(self, array: ma.masked_array, nbnotnull=99999): """Remplissage des valeurs de palette sur base d'une équirépartition de valeurs""" self.nb = 2 self.values = np.asarray([np.min(array), np.max(array)], dtype=np.float64) self.colors = np.asarray([[255, 255, 255, 255], [0, 0, 255, 255]], dtype=np.int32) self.colorsflt = np.asarray([[0., 0., 0., 1.], [1., 1., 1., 1.]], dtype=np.float64) self.fill_segmentdata()
[docs] def defaultblue(self): """Remplissage des valeurs de palette sur base d'une équirépartition de valeurs""" self.nb = 2 self.values = np.asarray([0., 1.], dtype=np.float64) self.colors = np.asarray([[255, 255, 255, 255], [0, 0, 255, 255]], dtype=np.int32) self.colorsflt = np.asarray([[0., 0., 0., 1.], [1., 1., 1., 1.]], dtype=np.float64) self.fill_segmentdata()