Source code for wolfgpu.loaders.wolf_loader

import time
import logging
from pathlib import Path
from typing import Union
from math import log10, ceil

import numpy as np
import pygame

# from wolfhece.PyGui import Wolf2DModel # deprecated in favor of prev_sim2D
from wolfhece.mesh2d.wolf2dprev import prev_sim2D

from importlib.metadata import version
[docs] wolf_hece_version = tuple(map(int, version("wolfhece").split('.')))
if wolf_hece_version <= (1,8,11): from wolfhece.mesh2d.wolf2dprev import prev_boundary_condition elif wolf_hece_version >= (2,0,5): from wolfhece.mesh2d.wolf2dprev import boundary_condition_2D as prev_boundary_condition else: # 1.8.13, 2.0.1 are broken for us :-( raise Exception(f"I don't recognize this version of wolfhece : {wolf_hece_version}") from ..glsimulation import GLSimulation, get_report_frequency from ..tile_packer import TilePackingMode from ..loaders.utils import convert_bc_type, make_impervious_bathymetry from ..simple_simulation import InfiltrationInterpolation, SimulationDuration, SimulationDurationType, TimeStepStrategy, BoundaryConditionsTypes from ..simple_simulation import NB_BC_TYPES, BoundaryConditionIndices as bci, BC_BLANK_VALUE
[docs] def load_sim_to_gpu( model: Union[Path, prev_sim2D], init_gl=True, glsim: Union[None, GLSimulation] = None, tile_size=16, interp_infiltration: InfiltrationInterpolation = InfiltrationInterpolation.NONE, shader_log_path=None, interpret_freq_type_as_wolf: bool = False, tiles_packing_mode: TilePackingMode = TilePackingMode.REGULAR, optimize_indirection: bool = False, fail_if_invalid_sim: bool = True ) -> GLSimulation: """ `model`: You can pass either a directory to a model (a `Path`) or a `Wolf2DModel`. `glsim`: If provided, the model will be loaded into the given simulation. If not provided, a brand new simulation will be created. `interpret_freq_type_as_wolf`: If true and unit of report frequency is seconds (instead of steps), then we interpret the duration of the simulation as a number of seconds (instead of a number of steps). This param was introduced because in our test/debug, "npas" is always expected to be a number of steps (and not seconds). """ assert isinstance(model, Path) or isinstance(model, prev_sim2D) assert interp_infiltration in (InfiltrationInterpolation.NONE, InfiltrationInterpolation.LINEAR) errors = [] def check_error(cond, msg): if not cond: errors.append(msg) if init_gl: pygame.init() # Loads a Wolf simulation into the simulator start_time = time.time() if isinstance(model, Path): logging.info(f"Loading model data from Wolf model {model}") # Will figure out itself the name of the files inside the directory wolf2d=prev_sim2D(fname=str(model)) #print(wolf2d.parameters.to_yaml()) # This is hackish but allows to load # the data of the simultaion (seems # like things are lazy loaded, or something like # that) else: wolf2d = model wolf2d.force_load() logging.info(f"Uploading to GPU") # TODO At some point, I'll have to merge all # of that back into PA's models, this is s huge duplication # of code (it was done to better understand what I take out # of PA's model; now that I understand them better, I could # directly take data out of them) def copy_and_extend(a): plus_row = np.vstack( [ a, np.zeros( (1,a.shape[1]) ) ]) plus_col = np.hstack( [ plus_row, np.zeros( (plus_row.shape[0],1) ) ]) return plus_col if wolf2d.nb_blocks > 1: logging.warning("The modelisation appears to be multi-blocks. I will *ONLY* handle the *first* one !") # FIXME Depending on the source, you may or may not # have a valid maks here. nap = wolf2d.napbin.array.data.copy() # FIXME Depending on the source, an active (= non masked) value is denoted # by +1 or -1; why are there two possibilities ? Inactive # seem to be always zero though. # So we fix that: 0 means inactive; 1 means active. nap[nap != 0] = 1 check_error(not np.all(nap == 0), "NAP matrix is full of zeros, meaning every cells are inactive!") # FIXME Why copy ? bathymetry = wolf2d.top.array.filled( np.max(wolf2d.top.array) ) check_error(np.sum(bathymetry < 0) == 0, "I have found negative levels of bathymetry. I can't handle that.") water_height = wolf2d.hbin.array.filled(0) # print(water_height) # print(wolf2d.hbin.array) check_error( np.sum(water_height < 0) == 0, "I have found negative levels of water. I can't handle that.") qxbin = wolf2d.qxbin.array.filled(0) qybin = wolf2d.qybin.array.filled(0) manning = wolf2d.frot.array.filled( np.max(wolf2d.frot.array) ) check_error( np.sum(manning < 0) == 0, "I have found negative Manning coefficients. I can't handle that.") # wolf2d.infiltration.plot_plt() infiltration = wolf2d.infiltration noptpas=wolf2d.parameters._scheme_optimize_timestep nxfin=wolf2d.nbx nyfin=wolf2d.nby dxfin=float(wolf2d.dx) dyfin=float(wolf2d.dy) check_error( dxfin == dyfin, "Only squared meshes supported; 'dxfin' must equal 'dyfin'") ponderation = wolf2d.parameters._scheme_rk froude_max = wolf2d[1]._froude_max if ponderation > 1.0 or ponderation <= 0.0: logging.warning(f"Unsupported ponderation value {ponderation}. I expect 'ponderation' between zero and one. I'll replace by R-K with 0.3/0.7.") ponderation = 0.3 vncsouhaite=wolf2d.parameters._scheme_cfl npas= int(wolf2d.parameters._nb_timesteps) tstep = wolf2d.parameters._timestep_duration or None # This mumbo jumbo to make sure wxWidget leaves us in peace to define our # own GL context It doesn't work if we can't close all frames which happens # when your mouse is on an OpenGL frame and the text lens gets activated. So # keep your mouse in the corner of the screen (or find a way to close all # frames) # wolf2d.allviews.Close() # wolf2d.allviews.mytooltip.Close() # wolf2d.Close() # wolf2d.mylogs.GetFrame().Close() # ex = None # wolf2d = None # logging.info("Sleeping") # # sleep(5) # logging.info("Awaking") if init_gl: from math import sqrt display_nfo = pygame.display.Info() screen_width = int(display_nfo.current_w*0.9) screen_height = int(display_nfo.current_h*0.9) sim_area = nxfin*nyfin screen_area = (screen_width * screen_height)/5 area_ratio = screen_area / sim_area aspect_ratio = nxfin / nyfin window_height = sqrt(area_ratio)*nyfin window_width = sqrt(area_ratio)*aspect_ratio*nyfin if window_height > screen_height: window_height = screen_height window_width = aspect_ratio * window_height elif window_width > screen_width: window_width = screen_width window_height= window_width / aspect_ratio window_height = int(round(window_height)) window_width = int(round(window_width)) # w,h=nxfin,nyfin # |pygame.DOUBLEBUF # Note: vsync=0: not sure this works. But setting no vblank on the # nvidia control panel does work. #window_width, window_height = nxfin, nyfin pygame.display.set_mode((window_width, window_height), pygame.OPENGL|pygame.DOUBLEBUF, vsync = 0) #pygame.display.set_mode((w, h), pygame.OPENGL) # # The glDisables will work only after pygame.display.set_mode has been # # called. # glDisable(GL_BLEND) # glDisable(GL_DEPTH_TEST) # # We absolutely don't want anti alisaing (for exampel # # when computeing the max step size) # glDisable(GL_POLYGON_SMOOTH) # logging.info("OpenGL initialized") # numpy is row-major (https://ncar-hackathons.github.io/scientific-computing/numpy/02_memory_layout.html) # consequently, addressing a numpy array is done as a[y,x] (y first). # In a WolfArray, the x and y are swapped when compared # to the width and height of a numpy array. # I have two solutions: # - I keep the (x,y) shape but then I need to transpose all WolfArray matrices # before sending the to GPU wolf and transpose them again when writing # results. # - I swap x,y to (y,x) but then I am at the mercy of any non-symetric # process in the simulation. check_error( (nxfin, nyfin) == bathymetry.shape, f"Shapes differ ? Params say: {wolf2d.nby}x{wolf2d.nbx}, .top file says {bathymetry.shape[0]}x{bathymetry.shape[1]}") # FIXME contiguous array ? Not sure it is of anyhelp since # pyopengl inputs np.array. nap = np.ascontiguousarray(nap.transpose()) logging.info(f"NAP as numpy array is {nap.shape[0]} rows x {nap.shape[1]} columns") if False: # debug code import matplotlib.pyplot as plt print(f"{np.min(nap.data)} - {np.max(nap.data)}") plt.title("Showing NAP values to figure which is which") plt.imshow(nap, origin="lower") plt.colorbar() plt.show() bathymetry = np.ascontiguousarray(bathymetry.transpose()) if False: numpy_crd = (4093-1,631-1) b = bathymetry[numpy_crd] from matplotlib import pyplot as plt plt.imshow(np.flipud(bathymetry)) plt.show() water_height = np.ascontiguousarray(water_height.transpose()) qxbin = np.ascontiguousarray(qxbin.transpose()) qybin = np.ascontiguousarray(qybin.transpose()) manning = np.ascontiguousarray(manning.transpose()) # Replace "null" value (-99999) byt something # meaningful so that when we query cells outside # the "general contour", we find somethign appropriate. # FIXME This should be done in the shaders so that computations # are adapted to missing data (instead of providing "default" # data). Note we have discussed that with PA in dec/2023 and # we decided it was OK for the moment. # Create a wall that is ten times has tall as the max bathy. # Additional sorcery to make that height something clearly # artificial, ie 9999. #unreachable_height = (10 ** (ceil(log10(np.max( bathymetry))) + 1)) - 1 #unreachable_height = round(np.max( bathymetry) + 2*np.max(water_height)) # bathymetry[bathymetry < 0] = unreachable_height # water_height[water_height < 0] = 0 # qxbin[qxbin == -99_999.0] = 0 # qybin[qybin == -99_999.0] = 0 # When handling boundary condition, we may look in cells # outside the computation domain (inactive, masked cells). # For these cells, we expect # "neutral" data (zeros) that won't affect computations. msk = nap == 0 # => True = inactive cell bathymetry[msk] = 99999. water_height[msk] = 0 qxbin[msk] = 0 # BUG ??? qybin[msk] = 0 # We enclose the simulation domain in a border # Make sure to leave the B.C. as they are. # FIXME I don't think it is necessary... nap_draft = np.copy(nap) for bc in wolf2d.parameters.clfbx.mybc: cell_numpy_crd = (bc.j-1, bc.i-1) nap_draft[cell_numpy_crd] = 1 for bc in wolf2d.parameters.clfby.mybc: cell_numpy_crd = (bc.j-1, bc.i-1) nap_draft[cell_numpy_crd] = 1 bathymetry = make_impervious_bathymetry(nap_draft, bathymetry) # min_pos = (628-1, 1887-1) # sl_row2 = slice(min_pos[0]-4, min_pos[0]+5) # sl_col2 = slice(min_pos[1]-4, min_pos[1]+5) # dbg_bath = bathymetry[sl_row2, sl_col2] # dbg_qxbin = qxbin[sl_row2, sl_col2] # dbg_qybin = qybin[sl_row2, sl_col2] # dbg_h = water_height[sl_row2, sl_col2] # These two are important because Qx is taken into account # when doing splitting. So if we need to split between # a cell that is inside the domain and one that is outside, # having zeros in the (outside domain) Qx,Qy makes computation # easier if not np.all( np.logical_not( (qxbin != 0) & (water_height == 0) )): logging.warning("There are cells where Qx is non-zero but where's no water ! Here are some coordinates:") logging.warning(np.fliplr(np.argwhere((qxbin != 0) & (water_height == 0)))) qxbin[(qxbin != 0) & (water_height == 0)] = 0 if not np.all( np.logical_not( (qybin != 0) & (water_height == 0) )): logging.warning("There are cells where Qy is non-zero but where's no water ! Here are some coordinates:") logging.warning(np.fliplr(np.argwhere((qybin != 0) & (water_height == 0)))) qybin[(qybin != 0) & (water_height == 0)] = 0 logging.info(f"{100*(np.sum(nap > 0)/(nxfin*nyfin)):.1f}% active meshes; {100*(np.sum(water_height !=0)/(nxfin*nyfin)):.1f}% meshes with water") # assert np.alltrue( np.logical_not( (qxbin != 0) & (water_height == 0) )), \ # "There are cells where Qx is non-zero but where's no water !" # assert np.alltrue( np.logical_not( (qybin != 0) & (water_height == 0) )), \ # "There are cells where Qy is non-zero but where's no water !" # Handle weak boundary conditions, horizontal direction # 1=active cell, shall be computed; 0=inactive cell, will not be computed. # Pay attention to the fact that if an active cell touches an inactive # one, then, there must be boundary conditions. # Bit 1: cell is active(==1) or not (==0) # Bit 2: weak boundary condition QX (left border) (==1) or not (==0) weak_boundary_cond = np.zeros((nyfin, nxfin), dtype=np.uint32) weak_boundary_cond[(water_height > 0) | (nap == 1)] = 1 # FIXME Not correct, use the NAP mask ! # Mapping cell numpy coordinates (x,y) onto an array # of values. Each value represents a boundary condition. # The index of the value represents the type of the condition. # If the value is BC_BLANK_VALUE it means the b.c. is not # used on the cell. # e.g. bc_descriptions[ (i,j) ] = [BC's H on left border's value, HMOD on left border's value, ... ] bc_descriptions = dict() # ------------------------------------------------------------------------ # Boundary Conditions on left borders # ------------------------------------------------------------------------ bc: prev_boundary_condition for bc in wolf2d.parameters.clfbx.mybc: bc_type = convert_bc_type(bc.ntype) logging.debug(f"B.C. left border at {bc.i},{bc.j}, type: {bc_type}") # Attention! x,y are swapped !!! cell_numpy_crd = (bc.j-1, bc.i-1) if cell_numpy_crd not in bc_descriptions: bc_descriptions[cell_numpy_crd] = [BC_BLANK_VALUE] * NB_BC_TYPES x, y = bc.i-1, bc.j-1 # i,j are Fortran coords => translate to numpy # - Either the BC is on the left border of a cell which # is on the interior side of the border of the domain. # - Either the BC is on the left border of a cell which # is on the exterior side of the border of the domain. left_cell_crd = (y, x - 1) if not( (x == 0 and nap[cell_numpy_crd] == 1) \ or (nap[cell_numpy_crd] == 1 and nap[left_cell_crd] == 0) \ or (nap[cell_numpy_crd] == 0 and nap[left_cell_crd] == 1)): err = f"Weak boundary condition at i={bc.i},j={bc.j}: this B.C. is not on the border of the computation domain" logging.error(err) raise Exception(err) if bc_type == BoundaryConditionsTypes.QX: logging.debug(f"Weak boundary condition over QX at i={bc.i},j={bc.j}, value={bc.val}") bc_descriptions[cell_numpy_crd][bci.BC_TABLE_INDEX_FOR_QX_ON_LEFT.value] = bc.val elif bc_type == BoundaryConditionsTypes.QY: logging.debug(f"Weak boundary condition over QY at i={bc.i},j={bc.j}, value={bc.val}") bc_descriptions[cell_numpy_crd][bci.BC_TABLE_INDEX_FOR_QY_ON_LEFT.value] = bc.val elif bc_type == BoundaryConditionsTypes.H: loc_msg = f"Weak boundary condition over H at i={bc.i},j={bc.j}" logging.debug(f"{loc_msg}, value={bc.val}") if bc.val < 0: # negative values are a hack to express impervious boundaries logging.error(f"{loc_msg}, h={bc.val} is negative !!!") if qxbin[cell_numpy_crd] > 0: logging.warning(f"{loc_msg} doesn't provide enough information to the cell (see cell flow direction)") if nap[cell_numpy_crd] == 0 \ and bathymetry[left_cell_crd] > bc.val: logging.error(f"{loc_msg}: seems located rightside of the " \ "domain but the bathymetry in the neighbour " \ f"cell is above the surface level of the b.c. {bathymetry[left_cell_crd]} > {bc.val}, I expect it to be below.") if nap[cell_numpy_crd] == 1 \ and bathymetry[cell_numpy_crd] > bc.val: logging.error(f"{loc_msg}: seems located leftside of the " \ "domain but the bathymetry in the cell is " \ f"above the surface level of the b.c. {bathymetry[left_cell_crd]} > {bc.val}, I expect it to be below.") bc_descriptions[cell_numpy_crd][bci.BC_TABLE_INDEX_FOR_H_ON_LEFT.value] = bc.val elif bc_type == BoundaryConditionsTypes.HMOD: logging.debug(f"Weak boundary condition over HMOD at i={bc.i},j={bc.j}, value={bc.val}") if bc.val < 0: # negative values are a hack to express impervious boundaries logging.warning(f"Weak boundary condition over HMOD at i={bc.i},j={bc.j}, value={bc.val} is negative !!!") if x < qxbin.shape[1] and y < qxbin.shape[0] and qxbin[y,x] > 0: logging.warning(f"Weak boundary condition over HMOD at i={bc.i},j={bc.j} doesn't provide enough information to the cell (see cell flow direction)") bc_descriptions[cell_numpy_crd][bci.BC_TABLE_INDEX_FOR_HMOD_ON_LEFT.value] = bc.val elif bc_type == BoundaryConditionsTypes.FROUDE_NORMAL: logging.debug(f"Weak boundary condition Froude normal direction at i={bc.i},j={bc.j}, value={bc.val}") check_error( bc.val > 0, f"The Froude number must be > 0, you gave {bc.val}") bc_descriptions[cell_numpy_crd][bci.BC_TABLE_INDEX_FOR_FROUDE_NORMAL_ON_LEFT.value] = bc.val else: logging.error(f"Unsupported weak condition type {bc_type}") # Attention: if we have a BC on the left border of cell (i,j) # we record it. But we also mark the cell (i-1,j) with a # no-values boundary condition. This special "no-values b.c." cell # will be interpreted by the GPU engine as a cell with a b.c. # on its *right* border. This is a bit hacky but makes sure # that the values of a boundary condition are not duplicated # across cells (which always carries a risk of mis-duplication bug) # Of course if one wants to change the BC on the (i-1,j) cell # he can as it will not disable the detection on a right border BC. # FIXME This is dangerous as usually a BC is defined on a border # but is meant to produce effect only on one side of the border. cell_numpy_crd_left = (cell_numpy_crd[0], cell_numpy_crd[1]-1) if cell_numpy_crd_left not in bc_descriptions: bc_descriptions[cell_numpy_crd_left] = [BC_BLANK_VALUE] * NB_BC_TYPES # ------------------------------------------------------------------------ # Boundary Conditions on bottom borders # ------------------------------------------------------------------------ bc: prev_boundary_condition for bc in wolf2d.parameters.clfby.mybc: bc_type = convert_bc_type(bc.ntype) logging.debug(f"B.C. bottom border at {bc.i},{bc.j}, type: {bc_type}") # Attention! x,y are swapped !!! cell_numpy_crd = (bc.j-1, bc.i-1) if cell_numpy_crd not in bc_descriptions: bc_descriptions[cell_numpy_crd] = [BC_BLANK_VALUE] * NB_BC_TYPES x, y = bc.i-1, bc.j-1 # i,j are Fortran coords => translate to numpy bottom_cell_crd = (y - 1, x) # - Either the BC is on the bottom border of a cell which # is on the interior side of the border of the domain. # - Either the BC is on the bottom border of a cell which # is on the exterior side of the border of the domain. if not( (x == 0 and nap[cell_numpy_crd] == 1) \ or (nap[cell_numpy_crd] == 1 and nap[bottom_cell_crd] == 0) \ or (nap[cell_numpy_crd] == 0 and nap[bottom_cell_crd] == 1)): err = f"Weak boundary condition at i={bc.i},j={bc.j}: this B.C. is not on the border of the computation domain" logging.error(err) raise Exception(err) if bc_type == BoundaryConditionsTypes.QX: logging.debug(f"Weak boundary condition over QX (bottom border) at i,j:{(bc.i, bc.j)}, value={bc.val}") bc_descriptions[cell_numpy_crd][bci.BC_TABLE_INDEX_FOR_QX_ON_BOTTOM.value] = bc.val elif bc_type == BoundaryConditionsTypes.QY: logging.debug(f"Weak boundary condition over QY (bottom border) at i,j:{(bc.i, bc.j)}, value={bc.val}") bc_descriptions[cell_numpy_crd][bci.BC_TABLE_INDEX_FOR_QY_ON_BOTTOM.value] = bc.val # elif bc_type == BoundaryConditionsTypes.H.value: # logging.info(f"Weak boundary condition over H (bottom border) at i,j:{(bc.i, bc.j)}, value={bc.val}") # if bc.val < 0: # # negative values are a hack to express impervious boundaries # logging.warning(f"Weak boundary condition over H (horiz border) at i={bc.i},j={bc.j}, value={bc.val} is negative !!!") # if qxbin[y,x] > 0: # logging.warning(f"Weak boundary condition over H (horiz border) at i={bc.i},j={bc.j} doesn't provide enough information to the cell (see cell flow direction)") # if bathymetry[cell_numpy_crd] > bc.val: # logging.error(f"Weak boundary condition over H at i={bc.i},j={bc.j}: the bathymetry is above the surface level, I expect it to be below.") # bc_descriptions[cell_numpy_crd][BC_TABLE_INDEX_FOR_H_ON_BOTTOM] = bc.val elif bc_type == BoundaryConditionsTypes.H: # ........................................................................ NEW loc_msg = f"Weak horizontal boundary condition over H (surface altitude) at i={bc.i},j={bc.j}" #logging.info(f"{loc_msg}, value={bc.val}") if bc.val < 0: # negative values are a hack to express impervious boundaries logging.error(f"{loc_msg}, h={bc.val} is negative !!!") if qybin[cell_numpy_crd] > 0: logging.warning(f"{loc_msg} doesn't provide enough information to the cell (see cell flow direction)") if nap[cell_numpy_crd] == 0 \ and bathymetry[bottom_cell_crd] > bc.val: logging.error(f"{loc_msg}: seems located top side of a mesh in the " \ "domain but the bathymetry in the neighbour " \ f"cell is above the surface level of the b.c. {bathymetry[bottom_cell_crd]} > {bc.val}, I expect it to be below.") if nap[cell_numpy_crd] == 1 \ and bathymetry[cell_numpy_crd] > bc.val: logging.error(f"{loc_msg}: seems located bottom side of a mesh in the " \ "domain but the bathymetry in the cell is " \ f"above the surface level of the b.c. {bathymetry[bottom_cell_crd]} > {bc.val}, I expect it to be below.") bc_descriptions[cell_numpy_crd][bci.BC_TABLE_INDEX_FOR_H_ON_BOTTOM.value] = bc.val # ........................................................................ NEW elif bc_type == BoundaryConditionsTypes.HMOD: logging.debug(f"Weak boundary condition over HMOD (water height, horiz border) at i={bc.i},j={bc.j}, value={bc.val}") if bc.val < 0: # negative values are a hack to express impervious boundaries logging.warning(f"But at i={bc.i},j={bc.j}, B.C.'s value={bc.val} is negative !!!") if x < qybin.shape[1] and y < qybin.shape[0] and qybin[y,x] > 0: logging.warning(f"But at i={bc.i},j={bc.j} B.C. doesn't provide enough information to the cell (see cell flow direction)") bc_descriptions[cell_numpy_crd][bci.BC_TABLE_INDEX_FOR_HMOD_ON_BOTTOM.value] = bc.val elif bc_type == BoundaryConditionsTypes.FROUDE_NORMAL: logging.debug(f"Weak boundary condition Froude normal direction at i={bc.i},j={bc.j}, value={bc.val}") check_error( bc.val > 0, f"The Froude number must be > 0, you gave {bc.val}") bc_descriptions[cell_numpy_crd][bci.BC_TABLE_INDEX_FOR_FROUDE_NORMAL_ON_BOTTOM.value] = bc.val else: raise Exception(f"Unsupported weak condition type {bc_type} at i={bc.i},j={bc.j}") # Mirror this BC on the top border of the bottom side cell. cell_numpy_crd_bottom = (cell_numpy_crd[0]-1, cell_numpy_crd[1]) if cell_numpy_crd_bottom not in bc_descriptions: bc_descriptions[cell_numpy_crd_bottom] = [BC_BLANK_VALUE] * NB_BC_TYPES # ........................................................................ # Handle strong boundary conditions # ........................................................................ strong_boundary_cond = np.ones((nyfin, nxfin), dtype=np.float32) strong_boundary_cond[:,:] = -99999.0 strong_boundary_cond_values = np.zeros((nyfin, nxfin, 3), dtype=np.float32) bc: prev_boundary_condition for bc in wolf2d.parameters.clf.mybc: bc_type = convert_bc_type(bc.ntype) if bc_type == BoundaryConditionsTypes.QX: x, y = bc.i-1, bc.j-1 logging.error(f"IGNORED Strong boundary condition over QX at x={x},y={y}={bc.val}") strong_boundary_cond[x, y] = 0.0 strong_boundary_cond_values[y, x] = np.array([0.0,bc.val,0.0]) elif bc_type == BoundaryConditionsTypes.H: # FIXME BoundaryConditionsTypes.H.value is shared with *weak* # boundary conditions. So is that number OK to be shared ? x, y = bc.i-1, bc.j-1 logging.error(f"IGNORED Strong boundary condition over H at x={x},y={y}={bc.val}") strong_boundary_cond[x, y] = 1.0 strong_boundary_cond_values[y, x] = np.array([bc.val,0.0,0.0]) else: raise Exception(f"Unsupported strong condition type {bc_type}") # ........................................................................ # Checking boundary conditions are coherent # ........................................................................ for crd, bc_values in bc_descriptions.items(): if np.all( np.array((bc_values) == BC_BLANK_VALUE)): # We don't have any b.c. here. # Two possible reasons: # - Wolf has more types of BC than what we support here). So none # is marked # - this `bc_values` represents a beacon for a top or right b.c. continue ij_crd = "i:{},j:{}".format(crd[1]+1,crd[0]+1) # Either there's no Qx and no Qy, either there is a Qx AND a Qy check_error( (bc_values[bci.BC_TABLE_INDEX_FOR_QX_ON_LEFT.value] != BC_BLANK_VALUE) == (bc_values[bci.BC_TABLE_INDEX_FOR_QY_ON_LEFT.value] != BC_BLANK_VALUE), \ f"At {ij_crd}, If you set Qx on the left border you must set Qy too, and vice versa.") check_error( (bc_values[bci.BC_TABLE_INDEX_FOR_QX_ON_BOTTOM.value] != BC_BLANK_VALUE) == (bc_values[bci.BC_TABLE_INDEX_FOR_QY_ON_BOTTOM.value] != BC_BLANK_VALUE), \ f"At {ij_crd}, If you set Qx (or Qy) on the bottom border you must set Qy (or Qx) too.") h_or_hmod = bc_values[bci.BC_TABLE_INDEX_FOR_H_ON_LEFT.value] != BC_BLANK_VALUE or bc_values[bci.BC_TABLE_INDEX_FOR_HMOD_ON_LEFT.value] != BC_BLANK_VALUE qx_or_qy = bc_values[bci.BC_TABLE_INDEX_FOR_QX_ON_LEFT.value] != BC_BLANK_VALUE or bc_values[bci.BC_TABLE_INDEX_FOR_QY_ON_LEFT.value] != BC_BLANK_VALUE # Read : (none of them) OR (any of them but not the two to of them) check_error( (not h_or_hmod and not qx_or_qy) or (h_or_hmod ^ qx_or_qy), \ f"At {ij_crd} {bc_values}, If you set Qx,Qy on left border then you can't set h/hmod.") if bc_values[bci.BC_TABLE_INDEX_FOR_QX_ON_LEFT.value] != BC_BLANK_VALUE: if nap[crd] != 0: check_error( nap[crd[0],crd[1]-1] == 0, \ f"Setting a left border b.c. at {ij_crd} makes sense if leftside cell is out of computation domain") else: check_error( nap[crd[0],crd[1]-1] != 0, \ f"Setting a right border b.c. at {ij_crd} makes sense if leftside cell is inside of computation domain") # ........................................................................ # Converting boundary conditions into GPU data # ........................................................................ # Convert the noted cells' boundary conditions into a # sequential array and pointing towards it. if bc_descriptions: bc_cells_array = [] for i,(cell_numpy_crd,bc_values) in enumerate(bc_descriptions.items()): bc_cells_array.append(bc_values) # Here is a tricky thing: # If there are some b.c. on a cell, then we give it an index >= 1. # If there are no b.c. we give the index 0. # This way we can know if there are b.c. or not without # looking at b.c. themselves. It's an optimisation. # Moreover, don't forget that a right-border B.C. will # be located outside of the active cells ! weak_boundary_cond[cell_numpy_crd] |= (i+1) << 1 # bit 1 is NAP. logging.debug(f"weak b.c.: #{weak_boundary_cond[cell_numpy_crd]}: {cell_numpy_crd} -> {bc_values}") bc_cells_array = np.array(bc_cells_array,dtype=np.float32) #print(bc_cells_array) #bc_cells_array = bc_cells_array.transpose() logging.info(f"There are {len(bc_descriptions)} boundary conditions.") else: bc_cells_array = None logging.debug(f"{100*(np.sum(weak_boundary_cond == 1)/(nxfin*nyfin)):.1f}% active meshes without BC in weak boundary conditions array") if errors: for error in errors: logging.error(error) if errors and fail_if_invalid_sim: raise Exception("Errors detected, check log") # ........................................................................ # Infiltration # ........................................................................ if hasattr(infiltration, "my_Q") and infiltration.my_Q.size > 0: infiltration_timings = infiltration.my_Q nb_infiltration_lines = infiltration_timings.shape[0] logging.debug("Infiltration timings array") logging.debug(infiltration_timings) assert np.all(np.diff(infiltration_timings[:,0]) > 0), f"The infiltration timings are not strictly increasing: {infiltration_timings[:,0]}" if interp_infiltration == InfiltrationInterpolation.LINEAR: assert infiltration_timings[0,0] == 0, f"The first infiltration time must be zero if you use interpolation" assert nb_infiltration_lines >= 2, f"You need at least two data points in infiltrations if you use interpolation" zones_numbers = np.unique(wolf2d.inf.array[wolf2d.inf.array > 0]).tolist() logging.info(f"Infitration zones numbers are : {zones_numbers}") used_zones = set() for row in infiltration_timings: for zone_ndx in range(1, row.shape[0]): if row[zone_ndx] > 0: used_zones.add(zone_ndx) if used_zones != set(zones_numbers): logging.warning(f"Mismatch between the zones in the infiltration table ({','.join(map(str,used_zones))}) and the zones in the infiltration map {','.join(set(map(str, zones_numbers))) or '[]'}.") for zone_ndx in range(1,infiltration_timings.shape[1]): a = wolf2d.inf.array == zone_ndx b = np.sum(a) if b == 0: logging.warning(f"The zone {zone_ndx} doesn't appear in the infiltration map.") # Compute zones sizes (once so we optimize a bit) zones_sizes = {} for zone_ndx in range(1, row.shape[0]): a = wolf2d.inf.array == zone_ndx b = np.sum(a) zones_sizes[zone_ndx] = b # Spread each infiltration's the water over its zone's meshes. for row in infiltration_timings: for zone_ndx in range(1, row.shape[0]): b = zones_sizes[zone_ndx] original_inf = row[zone_ndx] if b > 0: # Beware it's a surface ! row[zone_ndx] /= b * dxfin * dyfin #logging.info(f"Infiltration t_start={row[0]:.1f} s, zone {zone_ndx} has {b} cells with {original_inf} m²/s => infiltration per cell = {row[zone_ndx]:.4g} m²/s") logging.debug("Infiltration timings array after water dispatch") logging.debug(infiltration_timings) # print(wolf2d.inf.array) # print(wolf2d.inf.array.dtype) # -1 because we must be 0 based (and -xxxx means no zone) # but wolf is 1 based # FIXME Align the two infiltration_zones_array=wolf2d.inf.array.transpose() - 1 # import matplotlib.pyplot as plt # for row in infiltration_zones_array: # print(row.tolist()) # plt.imshow(infiltration_zones_array) # plt.show() else: infiltration_timings = None infiltration_zones_array = None # ........................................................................ # Admin # ........................................................................ report_freq = get_report_frequency(wolf2d) if interpret_freq_type_as_wolf and report_freq.type == SimulationDurationType.SECONDS: simulation_duration=SimulationDuration.from_seconds(npas) else: simulation_duration=SimulationDuration.from_steps(npas) logging.debug(f"Simulation will run for {npas} steps, records every {int(wolf2d.parameters._writing_frequency)} steps") if noptpas == 1: logging.debug("Optimized timestep") tss = TimeStepStrategy.OPTIMIZED_TIME_STEP if tstep: logging.warning("An optimized timestep strategy doesn't need a timestep") tstep = None else: logging.debug("Fixed timestep") tss = TimeStepStrategy.FIXED_TIME_STEP # water_height[:,:] = 0 # bathymetry[bathymetry < 0.1] = np.max(bathymetry) # strong_boundary_cond[:,:] = -99999.0 # strong_boundary_cond[900,:] = 5.0 # strong_boundary_cond[0:200,:] = 0.1 # strong_boundary_cond[1535:1735,:] = 0.1 # strong_boundary_cond[nap == 0] = -99999.0 if glsim is not None: reload_shaders = froude_max != glsim.froude_max glsim.set_params( width=nxfin, height=nyfin, dx=dxfin, dy=dyfin, ponderation_runge_kutta=ponderation, courant=vncsouhaite, froude_max=froude_max, time_step_strategy=tss, time_step=tstep, simulation_duration=simulation_duration, report_frequency=report_freq, basefilename=Path(wolf2d.filenamegen).name, tile_packing_mode=tiles_packing_mode, optimized_indirection=optimize_indirection, ) if reload_shaders: # Have to relaod the shaders if some of their *const* # have changed... (constants are part of the source code, # they're not uniform parameters). logging.debug("Reloading shaders") glsim._shader_log_path = shader_log_path else: glsim = GLSimulation(width=nxfin, height=nyfin, dx=dxfin, dy=dyfin, ponderation_runge_kutta=ponderation, courant=vncsouhaite, froude_max=froude_max, time_step_strategy=tss, time_step = tstep, max_steps=simulation_duration, report_frequency=report_freq, basefilename=Path(wolf2d.filenamegen).name, tile_size=tile_size, shader_log_path=shader_log_path, tile_packing_mode=tiles_packing_mode, optimized_indirection=optimize_indirection) logging.info("Filling the GPU") glsim.set_tile_size(tile_size) glsim.set_buffers( # Three times the same array of shape (h,w,3) quantity_arrays=[np.dstack([water_height, qxbin, qybin]) for i in range(3)], bathymetry_array=bathymetry, # strong_bc_array=strong_boundary_cond, strong_bc_values_array=strong_boundary_cond_values, manning_array=manning, active_meshes_array=nap != 0, # FIXME not necessary, remove. weak_bc_array=weak_boundary_cond, bc_cells_array=bc_cells_array, infiltration_zones_array=infiltration_zones_array, infiltration_timings=infiltration_timings ) glsim.complete_textures() # FIXME These info should not be here. Maybe return values ? if init_gl: glsim._window_width, glsim._window_height = window_width, window_height logging.info(f"Model load and GPU data upload took {time.time() - start_time:.1f}s") return glsim