Source code for wolfhece.mar.interface_MAR_WOLF


#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jan  3 16:31:47 2023

@author: jbrajkovic
"""

import numpy as np
import matplotlib.pyplot as plt
import commontools as ct
import xarray as xr
import matplotlib as mpl
import matplotlib.cm as cm
import glob as glob
import pyproj
import geopandas as gpd
from shapely.geometry import Polygon
from fiona.crs import from_epsg
import datetime
import os



[docs] class MAR_input_data: def __init__(self,xsummits,ysummits,date_debut,date_fin,directory,var): self.var=var self.xsummits=xsummits self.ysummits=ysummits self.date_debut=date_debut self.date_fin=date_fin self.directory=directory self.fn=fn = glob.glob(self.directory+"*"+str(date_debut.year)+"**nc") self.ds=xr.open_dataset(fn[0]) self.lons=np.transpose(np.array(self.ds.LON)) self.lats=np.transpose(np.array(self.ds.LAT)) self.Lb72=pyproj.Proj(projparams='epsg:31370') self.x_Lb72, self.y_Lb72 = self.Lb72(self.lons,self.lats)
[docs] def mask_rectangles(self): i=0 xmin=np.min(self.xsummits);xmax=np.max(self.xsummits) ymin=np.min(self.ysummits);ymax=np.max(self.ysummits) x=self.x_Lb72;y=self.y_Lb72 mask=np.zeros([x.shape[0],x.shape[1]]) while i<3: # print(i) j=i+1 while j<4: # print(i,xsummits) # print(j) if self.xsummits[j]<self.xsummits[i]: tempx=self.xsummits[i] tempy=self.ysummits[i] self.xsummits[i]=self.xsummits[j] self.ysummits[i]=self.ysummits[j] self.xsummits[j]=tempx self.ysummits[j]=tempy j=i+1 j=j+1 i=i+1 print(self.xsummits);print(self.ysummits) if (self.xsummits[0]-self.xsummits[1])>0.01: pab=((self.ysummits[1]-self.ysummits[0])/(self.xsummits[1]-self.xsummits[0])) pac=((self.ysummits[2]-self.ysummits[0])/(self.xsummits[2]-self.xsummits[0])) pbd=((self.ysummits[3]-self.ysummits[1])/(self.xsummits[3]-self.xsummits[1])) pcd=((self.ysummits[3]-self.ysummits[2])/(self.xsummits[3]-self.xsummits[2])) for i in range(0,x.shape[0]): for j in range(0,y.shape[1]): #cas 1 en dehors de la grande zone xp=x[i,j];yp=y[i,j] if xp>xmax or xp<xmin or yp>ymax or yp<ymin: # print(i,j) continue if self.ysummits[1]>self.ysummits[0]: # print(i,j) if xp>self.xsummits[0] and xp<self.xsummits[1]: yhaut=self.ysummits[0]+pab*(xp-self.xsummits[0]) ybas=self.ysummits[0]+pac*(xp-self.xsummits[0]) if yp<=yhaut and yp>=ybas:mask[i,j]=1 else:continue elif xp>self.xsummits[1] and xp<self.xsummits[2]: # print(i,j) yhaut=self.ysummits[1]+pbd*(xp-self.xsummits[1]) ybas=self.ysummits[0]+pac*(xp-self.xsummits[0]) if yp<=yhaut and yp>=ybas:mask[i,j]=1 else:continue else: ybas=self.ysummits[2]+pcd*(xp-self.xsummits[2]) yhaut=self.ysummits[1]+pbd*(xp-self.xsummits[1]) if yp<=yhaut and yp>=ybas:mask[i,j]=1 else:continue else: # if i==20:print(i,j) if xp>self.xsummits[0] and xp<self.xsummits[1]: # print('Hajmo') ybas=self.ysummits[0]+pab*(xp-self.xsummits[0]) yhaut=self.ysummits[0]+pac*(xp-self.xsummits[0]) if yp<=yhaut and yp>=ybas:mask[i,j]=1 else:continue elif xp>self.xsummits[1] and xp<self.xsummits[2]: # print(i,j) ybas=self.ysummits[1]+pbd*(xp-self.xsummits[1]) yhaut=self.ysummits[0]+pac*(xp-self.xsummits[0]) if yp<=yhaut and yp>=ybas:mask[i,j]=1 else:continue elif xp>self.xsummits[2] and xp<self.xsummits[3] : # print('Hajde') yhaut=self.ysummits[2]+pcd*(xp-self.xsummits[2]) ybas=self.ysummits[1]+pbd*(xp-self.xsummits[1]) if yp<=yhaut and yp>=ybas:mask[i,j]=1;#print(i,j) else:continue else: mask=((x>=xmin)&(x<=xmax))&((y>=ymin)&(y<=ymax)) mask=mask==1 return(mask)
"Séléction des données entre les deux dates pour le masque rectangulaire"
[docs] def select_MARdata(self): """ Input : var:nom de la variable hydro MAR (string) date_debut:date initiale (vecteur[heure,jour,mois,année] date_fin:idem pour date finale directory:répertoire avec simus MAR (en fonction du GCM/scénario) mask: masque spatiale(matrice de 0 et 1 de la zone d'intéret) Description : Sélectionne la variable hydro MAR, pour les pixels du masque. Retourne une matrice 2D avec toutes les valeurs MAR pour tous les pas de temps exemple: 5 pas de temps et 100 pixels , output = matrice de dimensions(100,5) """ varnames=['MBRR','MBSF','MBRO1','MBRO2','MBRO3','MBRO4', 'MBRO5','MBRO6','MBCC','MBEP','MBET','MBSL','MBSC','MBM','MBSN'] var=self.var mask=self.mask_rectangles() for i in range(0,np.size(varnames)): if var==varnames[i]:var_index=i var_subpixel_cover="FRV" covers=xr.open_dataset(glob.glob(self.directory+"*1986**nc*")[0]) covers=np.transpose(np.array(covers[var_subpixel_cover]))/100. if self.date_debut.year==self.date_fin.year: year=self.date_debut.hour;day=self.date_debut.day;month=self.month fn = glob.glob(self.directory+"*"+str(year)+"**nc*") ds=xr.open_dataset(fn[0]) JJ=ct.date2JJ(day, month, year) MAR_time_step=np.transpose(np.array(ds['MBRR'])).shape[2] if ct.isbis(year)==1:ndays=366 else:ndays=365 MAR_time_step=float(MAR_time_step)/ndays MAR_time_step_hours=(MAR_time_step*24) if MAR_time_step==1.: indice_debut=JJ-1 indice_fin=ct.date2JJ(self.date_fin.day,month,year)-1 else: indice_debut=JJ*(int(24/MAR_time_step_hours))-1+(int(self.date_debut[0]\ /MAR_time_step_hours)) indice_fin=ct.date2JJ(self.date_fin.day,month,year)*\ (int(24/MAR_time_step_hours))-1+(int(self.date_fin.hour\ /MAR_time_step_hours))-1 if var_index>1: values1=np.transpose(np.array(ds[var]))[:,:,0,indice_debut:indice_fin+1] values2=np.transpose(np.array(ds[var]))[:,:,1,indice_debut:indice_fin+1] values3=np.transpose(np.array(ds[var]))[:,:,2,indice_debut:indice_fin+1] for j in range(0,np.shape(values1)[2]): # print(j,np.shape(values1)) values1[:,:,j]=values1[:,:,j]*covers[:,:,0] values2[:,:,j]=values2[:,:,j]*covers[:,:,1] values3[:,:,j]=values3[:,:,j]*covers[:,:,2] values=values1+values2+values3 else: values=np.transpose(np.array(ds[var]))[:,:,indice_debut:indice_fin+1] values=values[mask] else: year=self.date_debut.year;day=self.date_debut.day;month=self.date_debut.month;hour=self.date_debut.hour fn = glob.glob(self.directory+"*"+str(year)+"**nc*") ds=xr.open_dataset(fn[0]) JJ=ct.date2JJ(day, month, year) MAR_time_step=np.transpose(np.array(ds['MBRR'])).shape[2] if ct.isbis(year)==1:ndays=366 else:ndays=365 MAR_time_step=float(MAR_time_step)/ndays MAR_time_step_hours=(MAR_time_step*24) if MAR_time_step==1.: indice_debut=JJ-1 indice_fin=ct.date2JJ(self.date_fin.day,month,year)-1 else: indice_debut=JJ*(int(24/MAR_time_step_hours))-1+(int(hour\ /MAR_time_step_hours)) indice_fin=ct.date2JJ(self.date_fin.day,month,year)*\ (int(24/MAR_time_step_hours))-1+(int(self.date_fin.hour\ /MAR_time_step_hours))-1 if var_index>1: values1=np.transpose(np.array(ds[var]))[:,:,0,indice_debut:] values2=np.transpose(np.array(ds[var]))[:,:,1,indice_debut:] values3=np.transpose(np.array(ds[var]))[:,:,2,indice_debut:] for j in range(0,np.shape(values1)[2]): # print(j,np.shape(values1)) values1[:,:,j]=values1[:,:,j]*covers[:,:,0] values2[:,:,j]=values2[:,:,j]*covers[:,:,1] values3[:,:,j]=values3[:,:,j]*covers[:,:,2] values=values1+values2+values3 values=values[mask] for y in range(year+1,self.date_fin.year+1): if y<self.date_fin.year: fn = glob.glob(self.directory+"*"+str(y)+"**nc*") ds=xr.open_dataset(fn[0]) values1=np.transpose(np.array(ds[var]))[:,:,0,:] values2=np.transpose(np.array(ds[var]))[:,:,1,:] values3=np.transpose(np.array(ds[var]))[:,:,2,:] for j in range(0,np.shape(values1)[2]): # print(j,np.shape(values1)) values1[:,:,j]=values1[:,:,j]*covers[:,:,0] values2[:,:,j]=values2[:,:,j]*covers[:,:,1] values3[:,:,j]=values3[:,:,j]*covers[:,:,2] values=np.append(values,(values1+values2+values3)[mask],axis=1) else: fn = glob.glob(self.directory+"*"+str(y)+"**nc*") ds=xr.open_dataset(fn[0]) values1=np.transpose(np.array(ds[var]))[:,:,0,:indice_fin+1] values2=np.transpose(np.array(ds[var]))[:,:,1,:indice_fin+1] values3=np.transpose(np.array(ds[var]))[:,:,2,:indice_fin+1] for j in range(0,np.shape(values1)[2]): # print(j,np.shape(values1)) values1[:,:,j]=values1[:,:,j]*covers[:,:,0] values2[:,:,j]=values2[:,:,j]*covers[:,:,1] values3[:,:,j]=values3[:,:,j]*covers[:,:,2] values=np.append(values,(values1+values2+values3)[mask],axis=1) else: print(mask) values=np.transpose(np.array(ds[var]))[:,:,indice_debut:][mask] for y in range(year+1,self.date_fin.year+1): if y<self.date_fin.year: values=np.append(values, np.transpose(np.array(ds[var]))[:,:,:][mask], axis=1) else: values=np.append(values, np.transpose(np.array(ds[var]))[:,:,:indice_fin+1][mask], axis=1) return(values)
"Definition of the mar time-step" "A modifier par la suite si le pas temporel du MAR est inférieur à l'heure"
[docs] def find_timestep(self): """ Routine qui trouve le time step de MAR en heures """ year=self.date_debut.year fn = glob.glob(self.directory+"*"+str(year)+"**nc*") ds=xr.open_dataset(fn[0]) vec_out=['',''] MAR_time_step=np.transpose(np.array(ds['MBRR'])).shape[2] if ct.isbis(year)==1:ndays=366 else:ndays=365 MAR_time_step=MAR_time_step/ndays MAR_time_step_hours=24*MAR_time_step if MAR_time_step_hours<1:vec_out[1]='mins';vec_out[0]=str(int(MAR_time_step_hours*60)) else:vec_out[1]='hours';vec_out[0]=str(int(MAR_time_step_hours)) return(vec_out)
[docs] def make_time(self): """ formatte une matrice avec la date pour chaque pas de temps en heure,jour,mois,année à redévelopper si pas de temps inférieurs à l'heure """ time_step=self.find_timestep() if time_step[1]=='hours': time_step=int(time_step[0]) date=np.array([self.date_debut]) end_month=[31,28,31,30,31,30,31,31,30,31,30,31] i=0 datec=np.array(self.date_debut) # print(datec,date_fin) while ((self.date_fin[0] != datec[0]) or (self.date_fin[1] != datec[1]) \ or (self.date_fin[2] != datec[2]) or (self.date_fin[3] != datec[3])): print(datec) if i!=0:datec=date[i,:] print(i) new_hour=datec[0]+time_step print(new_hour) if new_hour>=24.:new_day=datec[1]+1;new_hour=new_hour-24 else:new_day=datec[1] if datec[2]==2.: if ct.isbis(datec[3]):end_month[1]=29 else:end_month[1]=28 if new_day>end_month[int(datec[2])-1]: new_month=datec[2]+1 new_day=1 if new_month>12: new_year=datec[3]+1 new_month=1 else:new_month=datec[2];new_year=datec[3] new_vec=np.array([[new_hour,new_day,new_month,new_year]]) date=np.append(date,new_vec,axis=0) datec=np.array([new_hour,new_day,new_month,new_year]) i=i+1 date=np.append(date,np.array([self.date_fin]),axis=0) return(date)
"Calcul des sommets des pixels MAR"
[docs] def MAR_summits(self): """ utilise les longitudes et latitudes des centres des pixels MAR pour calculer les coordonnées des sommets des pixels en Lambert 72 outputs: deux matrices contenant pour chaque pixels les 4 coordonnées des 4 sommets """ summits_lon=np.zeros([self.lons.shape[0],self.lons.shape[1],4]) summits_lat=np.zeros([self.lons.shape[0],self.lons.shape[1],4]) summits_x=np.zeros([self.lons.shape[0],self.lons.shape[1],4]) summits_y=np.zeros([self.lons.shape[0],self.lons.shape[1],4]) for i in range(1,self.lons.shape[0]-1): for j in range(1,self.lons.shape[1]-1): summits_lon[i,j,0]=(self.lons[i,j]+self.lons[i-1,j]+self.lons[i-1,j-1]+self.lons[i,j-1])/4 summits_lon[i,j,1]=(self.lons[i,j]+self.lons[i-1,j]+self.lons[i-1,j+1]+self.lons[i,j+1])/4 summits_lon[i,j,2]=(self.lons[i,j]+self.lons[i,j+1]+self.lons[i+1,j]+self.lons[i+1,j+1])/4 summits_lon[i,j,3]=(self.lons[i,j]+self.lons[i,j-1]+self.lons[i+1,j-1]+self.lons[i+1,j])/4 summits_lat[i,j,0]=(self.lats[i,j]+self.lats[i-1,j]+self.lats[i-1,j-1]+self.lats[i,j-1])/4 summits_lat[i,j,1]=(self.lats[i,j]+self.lats[i-1,j]+self.lats[i-1,j+1]+self.lats[i,j+1])/4 summits_lat[i,j,2]=(self.lats[i,j]+self.lats[i,j+1]+self.lats[i+1,j]+self.lats[i+1,j+1])/4 summits_lat[i,j,3]=(self.lats[i,j]+self.lats[i,j-1]+self.lats[i+1,j-1]+self.lats[i+1,j])/4 summits_x,summits_y=self.Lb72(summits_lon,summits_lat) return(summits_x,summits_y)
"Sortie shapefile"
[docs] def MAR_shapefile(self,name,dirout1): """ cette routine sort les piwels MAR au format shapefile le nom donné dans le sous-dossier GRID """ MASK=self.mask_rectangles() sommets_x,sommets_y=self.MAR_summits() xs=np.array([sommets_x[:,:,0][MASK]]) ys=np.array([sommets_y[:,:,0][MASK]]) for i in range(1,4): xs=np.append(xs,np.array([sommets_x[:,:,i][MASK]]),axis=0) ys=np.append(ys,np.array([sommets_y[:,:,i][MASK]]),axis=0) xs=np.transpose(xs);ys=np.transpose(ys) newdata = gpd.GeoDataFrame() newdata['geometry'] = None for i in range(0,xs.shape[0]): coordinates=[(xs[i,0],ys[i,0]),(xs[i,1],ys[i,1]), (xs[i,2],ys[i,2]),(xs[i,3],ys[i,3])] poly = Polygon(coordinates) newdata.loc[i, 'geometry'] = poly newdata.loc[i, 'polyID'] = str(i+1) newdata.crs = from_epsg(31370) print(newdata.crs) if os.path.exists(dirout1+'GRID/')==False:os.mkdir(dirout1+'GRID/') outfp=dirout1+'GRID/'+name newdata.to_file(outfp)
"sortie fichiers textes"
[docs] def MAR_TextOutputs(self,dirout1): """ sortie au format texte 1 fichier par polygone nom du fichier = ID du polygone.rain """ time_step=self.find_timestep() vec_data=self.select_MARdata() date_debut=self.date_debut if os.path.exists(dirout1+'DATA/')==False:os.mkdir(dirout1+'DATA/') date_debut=self.date_debut if time_step[1]=='hours': MAR_timestep=datetime.timedelta(hours=int(time_step[0])) elif time_step[1]=='minutes': MAR_timestep=datetime.timedelta(minutes=int(time_step[0])) print(vec_data.shape) for i in range(0,vec_data.shape[0]): filename=str(i+1)+'.rain' f=open(dirout1+"DATA/"+filename,'w') print(f) date_move=date_debut for j in range(0,vec_data.shape[1]): if j!=0:date_move=date_move+MAR_timestep lines=[str(date_move.day),str(date_move.month),str(date_move.year), str(date_move.hour),str(date_move.minute),str(date_move.second), "{:.3f}".format(vec_data[i,j])] line="" for k in range(0,np.size(lines)): line=line+lines[k]+" " f.write(line) f.write('\n') f.close()
"Test de l'objet" if __name__ == "__main__":
[docs] dir_ds="/phypc11_tmp3/MARv3.12-EUa-ERA5-7.5km/" #dossier avec sortie MAR au format Netcdf
dirout="/srv7_tmp1/jbrajkovic/These/forWOLF/" #dossier outputs filenameshp="essai_shapefile.shp" #nom du shapefile en sortie var='MBRO3' #nom de la variable MAR "dates entre lesquels sélectionner les données (Heures,jour,mois,annee" "code à retravailler si simulations futures avec pas de temps inférieur à l'heure" date_debut1=datetime.datetime(1982,2,11,0) date_fin1=datetime.datetime(1983,2,14,0) "Définition d'un rectangle" xs=[214483.7080517296,214483.7080517296, 279889.2010234059,279889.2010234059] ys=[121177.71725134458,173365.95575146656, 173365.95575146656,121177.71725134458] objet_MAR=MAR_input_data(xs,ys,date_debut1,date_fin1,dir_ds,'MBRO3') objet_MAR.MAR_shapefile(filenameshp,dirout) objet_MAR.MAR_TextOutputs(dirout) "Tests outputs" MBRO3_mask=objet_MAR.select_MARdata()[:,0] MSK=objet_MAR.mask_rectangles() fig=plt.figure(figsize=(6,6)) ax=plt.subplot() m=ct.map_belgium_zoom(ax, objet_MAR.lons, objet_MAR.lats) lons_w=objet_MAR.lons[MSK==True];lats_w=objet_MAR.lats[MSK] MBRO3=np.array(objet_MAR.lons) for k in range(0,np.size(MBRO3_mask)): for i in range(0,MBRO3.shape[0]): for j in range(0,MBRO3.shape[1]): if lons_w[k]==objet_MAR.lons[i,j] and lats_w[k]==objet_MAR.lats[i,j]: MBRO3[i,j]=MBRO3_mask[k] vmax=np.max(MBRO3) MBRO3[MSK==False]=float("nan") x,y=m(objet_MAR.lons,objet_MAR.lats) bounds=ct.makebounds(MBRO3,vmax/100.) cmap = cm.jet norm = mpl.colors.BoundaryNorm(bounds, cmap.N) mapa=m.pcolormesh(x,y,MBRO3) cbar=m.colorbar(norm=norm,cmap=cmap,location='left',pad=0.6)