Source code for wolfhece.wolf_array

"""
Author: HECE - University of Liege, Pierre Archambeau
Date: 2024

Copyright (c) 2024 University of Liege. All rights reserved.

This script and its content are protected by copyright law. Unauthorized
copying or distribution of this file, via any medium, is strictly prohibited.
"""

import os
import sys
from typing import Union, Literal
from matplotlib.axis import Axis
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
from matplotlib.colors import Colormap
import numpy as np
import numpy.ma as ma
import math as m
import logging
import json
import tempfile
from pathlib import Path
from tqdm import tqdm

try:
    from OpenGL.GL import *
except:
    msg=_('Error importing OpenGL library')
    msg+=_('   Python version : ' + sys.version)
    msg+=_('   Please check your version of opengl32.dll -- conflict may exist between different files present on your desktop')
    raise Exception(msg)

import math
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.path as mpltPath
import re
import wx
from scipy.interpolate import interp2d, griddata
from scipy.ndimage import laplace, label, sum_labels
import pygltflib
from shapely.geometry import Point, LineString, MultiLineString, Polygon, MultiPolygon, MultiPoint
from shapely.ops import linemerge, substring, polygonize_full
from os.path import dirname,basename,join
import logging
from typing import Literal
from copy import deepcopy
from enum import Enum

try:
    from .PyTranslate import _
except ImportError as e:
    print(e)
    raise Exception(_('Error importing modules'))

try:
    from osgeo import gdal
except ImportError as e:
    print(e)
    raise Exception(_('Error importing GDAL library'))

try:
    from .Coordinates_operations import reproject_and_resample_raster
except ImportError as e:
    print(e)
    raise Exception(_('Error importing modules'))

try:
    from .GraphNotebook import PlotPanel
except ImportError as e:
    print(e)
    raise Exception(_('Error importing modules GraphNotebook'))

try:
    from .CpGrid import CpGrid
except ImportError as e:
    print(e)
    raise Exception(_('Error importing modules'))

try:
    from .drawing_obj import Element_To_Draw
except ImportError as e:
    print(e)
    raise Exception(_('Error importing modules'))

try:
    from .libs import wolfogl
except ImportError as e:
[docs] msg=_('Error importing wolfogl.pyd')
msg+=_(' Python version : ' + sys.version) msg+=_(' If your Python version is not 3.10.x, you need to get an adapted library in wolfhece library path libs') msg+=_(' Please contact us or launch *python compile_wcython.py build_ext --inplace* in :') msg+=' ' + os.path.dirname(__file__) msg+=_(' if you have the source files of the Cython modules.') raise Exception(msg) try: from .xyz_file import XYZFile from .PyPalette import wolfpalette from .PyVertexvectors import Zones, vector, wolfvertex, zone, Triangulation from .PyVertex import cloud_vertices from .opengl.py3d import Cache_WolfArray_plot3D, WolfArray_plot3D except ImportError as e: print(e) raise Exception(_('Error importing modules'))
[docs] WOLF_ARRAY_HILLSHAPE = -1
[docs] WOLF_ARRAY_FULL_SINGLE = 1
[docs] WOLF_ARRAY_FULL_DOUBLE = 2
[docs] WOLF_ARRAY_SYM_DOUBLE = 12
[docs] WOLF_ARRAY_FULL_LOGICAL = 4
[docs] WOLF_ARRAY_CSR_DOUBLE = 5
[docs] WOLF_ARRAY_FULL_INTEGER = 6
[docs] WOLF_ARRAY_FULL_SINGLE_3D = 7
[docs] WOLF_ARRAY_FULL_INTEGER8 = 8
[docs] WOLF_ARRAY_FULL_UINTEGER8 = 88
[docs] WOLF_ARRAY_MB_SINGLE = 3
[docs] WOLF_ARRAY_MB_INTEGER = 9
[docs] WOLF_ARRAY_FULL_INTEGER16_2 = 0
[docs] WOLF_ARRAY_FULL_INTEGER16 = 11
[docs] WOLF_ARRAY_MNAP_INTEGER = 20
[docs] WOLF_ARRAY_MB = [WOLF_ARRAY_MB_SINGLE, WOLF_ARRAY_MB_INTEGER, WOLF_ARRAY_MNAP_INTEGER]
[docs] VERSION_RGB = 3
from numba import jit @jit(nopython=True)
[docs] def custom_gradient(array: np.ndarray): """ Calculate the gradient manually """ grad_x = np.zeros_like(array) grad_y = np.zeros_like(array) for i in range(1, array.shape[0] - 1): for j in range(1, array.shape[1] - 1): grad_x[i, j] = (array[i + 1, j] - array[i - 1, j]) / 2.0 grad_y[i, j] = (array[i, j + 1] - array[i, j - 1]) / 2.0 return grad_x, grad_y
@jit(nopython=True)
[docs] def hillshade(array:np.ndarray, azimuth:float, angle_altitude:float) -> np.ndarray: """ Create a hillshade array """ azimuth = 360.0 - azimuth x, y = custom_gradient(array) slope = np.pi / 2. - np.arctan(np.sqrt(x * x + y * y)) aspect = np.arctan2(-x, y) azimuthrad = azimuth * np.pi / 180. altituderad = angle_altitude * np.pi / 180. shaded = np.sin(altituderad) * np.sin(slope) + np.cos(altituderad) * \ np.cos(slope) * np.cos((azimuthrad - np.pi / 2.) - aspect) shaded += 1. shaded *= .5 return shaded.astype(np.float32)
[docs] class Rebin_Ops(Enum):
[docs] MIN = 0
[docs] MEAN = 1
[docs] MAX = 2
[docs] SUM = 3
[docs] MEDIAN = 4
@classmethod
[docs] def get_numpy_ops(cls): """ Return a list of numpy functions corresponding to the enum values """ # CAUTION : Order is important and must match the enum values return [np.ma.min, np.ma.mean, np.ma.max, np.ma.sum, np.ma.median]
@classmethod
[docs] def get_ops(cls, name:str): """ Return the numpy function corresponding to a string """ if isinstance(name, Rebin_Ops): return cls.get_numpy_ops()[name.value] elif isinstance(name, str): if name == 'min': return np.ma.min elif name == 'mean': return np.ma.mean elif name == 'max': return np.ma.max elif name == 'sum': return np.ma.sum elif name == 'median': return np.ma.median else: return None else: return None
[docs] def getkeyblock(i, addone=True) -> str: """ Name/Key of a block in the dictionnary of a WolfArrayMB instance For Fortran compatibility, addone is True by default so first block is "block1" and not "block0" """ if addone: return 'block' + str(i + 1) else: return 'block' + str(i)
[docs] def decodekeyblock(key, addone=True) -> int: """ Decode key of a block in the dictionnary of a WolfArrayMB instance For Fortran compatibility, addone is True by default so first block is "block1" and not "block0" """ if addone: return int(key[5:]) else: return int(key[5:]) - 1
[docs] class header_wolf(): """ Header of WolfArray In case of a mutliblock, the header have informations about all the blocks in head_blocks dictionnary. Block keys are generated by "getkeyblock" function """ # FIXME It'd be wise to put the multiblock case into another class. # for example "header_wolf_MB" else one could construct hierearchies # of headers which don't exist in practice.
[docs] head_blocks: dict[str,"header_wolf"]
def __init__(self) -> None: """ Origin (origx, origy, [origz]) is the point in local space from which every other coordinates are measured. Translation (translx, transly, [translz]) is the translation of the origin in global space. If translation is null, the origin is the same in local and global space. :-) Resolution (dx, dy, [dz]) is the spatial resolution of the array. Nullvalue is the value of the null value in the array. (nbx, nby, [nbz]) are the number of cells in the array along X and Y [and Z]. It is the shape of the array. @property nbdims is the number of dimensions of the array (2 or 3) """ self.origx = 0.0 self.origy = 0.0 self.origz = 0.0 self.translx = 0.0 self.transly = 0.0 self.translz = 0.0 self.dx = 0.0 self.dy = 0.0 self.dz = 0.0 self.nbx = 0 self.nby = 0 self.nbz = 0 self.head_blocks = {} self._nullvalue = 0. def __str__(self) -> str: """ Return a string representation of the header """ ret = '' ret += _('Shape : {} x {} \n').format(self.nbx, self.nby) ret += _('Resolution : {} x {} \n').format(self.dx, self.dy) ret += _('Spatial extent : \n') ret += _(' - Origin : ({} ; {}) \n').format(self.origx, self.origy) ret += _(' - End : ({} ; {}) \n').format(self.origx + self.nbx * self.dx, self.origy +self.nby * self.dy) ret += _(' - Width x Height : {} x {} \n').format(self.nbx * self.dx, self.nby * self.dy) ret += _(' - Translation : ({} ; {})\n').format(self.translx, self.transly) ret += _('Null value : {}\n\n'.format(self.nullvalue)) if len(self.head_blocks) > 0: ret += _('Number of blocks : {}\n\n').format(len(self.head_blocks)) for key, value in self.head_blocks.items(): ret += _('Block {} : \n\n').format(key) ret += str(value) return ret @property
[docs] def nullvalue(self): return self._nullvalue
@nullvalue.setter def nullvalue(self, value:float): self._nullvalue = value @property
[docs] def nbdims(self): if self.nbz == 0: if self.nbx > 0 and self.nby > 0: return 2 else: return 0 elif self.nbz > 0: return 3 else: raise Exception(_('The number of dimensions is not correct'))
@nbdims.setter def nbdims(self, value): logging.warning(_('nbdims was an attribute of header_wolf.\nIt is now a read-only property.\nPlease use nbx, nby and nbz instead to define the shape of the array')) raise Exception(_('This property is read-only')) @property
[docs] def shape(self): if self.nbdims == 2: return (self.nbx, self.nby) elif self.nbdims == 3: return (self.nbx, self.nby, self.nbz) else: return (0, 0)
@shape.setter def shape(self, value:tuple[int]): if len(value) == 3: self.nbx = value[0] self.nby = value[1] self.nbz = value[2] elif len(value) == 2: self.nbx = value[0] self.nby = value[1] self.nbz = 0 else: raise Exception(_('The number of dimensions is not correct')) @property
[docs] def nb_blocks(self): return len(self.head_blocks)
def __getitem__(self, key:Union[int,str]=None): """ Return block header :param key: block's index (0-based) or key (str) :return: header_wolf instance if key is found, None otherwise """ if key is None: return self if isinstance(key,int): _key = getkeyblock(key) else: _key = key if _key in self.head_blocks.keys(): return self.head_blocks[_key] else: return None def __setitem__(self, key:Union[int,str], value:"header_wolf"): """ Set block header :param value: tuple (key, header_wolf) 'key' can be an int (0-based) or a str If str, please use getkeyblock function to generate the key """ if isinstance(key,int): _key = getkeyblock(key) else: _key = key self.head_blocks[_key] = deepcopy(value)
[docs] def set_origin(self, x:float, y:float, z:float): """ Set origin :param x: origin along X :param y: origin along Y :param z: origin along Z """ self.origx = x self.origy = y self.origz = z
[docs] def set_translation(self, tr_x:float, tr_y:float, tr_z:float): """ Set translation :param tr_x: translation along X :param tr_y: translation along Y :param tr_z: translation along Z """ self.translx = tr_x self.transly = tr_y self.translz = tr_z
[docs] def get_bounds(self, abs=True): """ Return bounds in coordinates :param abs: if True, add translation to (x, y) (coordinate to global space) :return: tuple of two lists of two floats - ([xmin, xmax],[ymin, ymax]) """ if abs: return ([self.origx + self.translx, self.origx + self.translx + float(self.nbx) * self.dx], [self.origy + self.transly, self.origy + self.transly + float(self.nby) * self.dy]) else: return ([self.origx, self.origx + float(self.nbx) * self.dx], [self.origy, self.origy + float(self.nby) * self.dy])
[docs] def get_bounds_ij(self, abs=False): """ Return bounds in indices Firstly, get_bounds is called to get bounds in coordinates and then get_ij_from_xy is called to get bounds in indices. :param abs: if True, add translation to (x, y) (coordinate to global space) """ mybounds = self.get_bounds(abs) return ( [self.get_ij_from_xy(mybounds[0][0], mybounds[1][0], abs=abs), self.get_ij_from_xy(mybounds[0][1], mybounds[0][0], abs=abs)], [self.get_ij_from_xy(mybounds[0][0], mybounds[1][1], abs=abs), self.get_ij_from_xy(mybounds[0][1], mybounds[1][1], abs=abs)])
[docs] def get_ij_from_xy(self, x:float, y:float, z:float=0., scale:float=1., aswolf:bool=False, abs:bool=True, forcedims2:bool=False) -> Union[tuple[np.int32,np.int32], tuple[np.int32,np.int32,np.int32]]: """ Get indices from coordinates :param x: X coordinate :param y: Y coordinate :param z: Z coordinate (optional) :param scale: scaling of the spatial resolution (dx,dy,[dz]) :param aswolf: if True, return if one-based (as Wolf VB6 or Fortran), otherwise 0-based (default Python standard) :param abs: if True, remove translation from (x, y, [z]) (coordinate from global space) :param forcedims2: if True, force to return only 2 indices even if z is supplied """ locx = np.float64(x) - self.origx locy = np.float64(y) - self.origy locz = np.float64(z) - self.origz if abs: locx = locx - self.translx locy = locy - self.transly locz = locz - self.translz i = np.int32(np.floor(locx / (self.dx * scale))) j = np.int32(np.floor(locy / (self.dy * scale))) if aswolf: i += 1 j += 1 if self.nbdims == 3 and not forcedims2: k = np.int32(np.floor(locz / (self.dz * scale))) if aswolf: k += 1 return i, j, k elif self.nbdims == 2 or forcedims2: return i, j
[docs] def get_ij_from_xy_array(self, xy:np.ndarray, scale:float=1., aswolf:bool=False, abs:bool=True, forcedims2:bool=False) -> np.ndarray: """ Get indices from coordinates :param xy = numpy array containing (x, y, [z]) coordinates - shape (n, 2) or (n, 3) :param scale = scaling of the spatial resolution (dx,dy,[dz]) :param aswolf = if True, return if one-based (as Wolf VB6 or Fortran), otherwise 0-based (default Python standard) :param abs = if True, remove translation from (x, y, [z]) (coordinate from global space) :param forcedims2 = if True, force to return only 2 indices even if z is supplied :return: numpy array containing (i, j, [k]) indices - shape (n, 2) or (n, 3) """ if isinstance(xy,tuple): if len(xy) == 2: if (isinstance(xy[0],np.ndarray)) and (isinstance(xy[1],np.ndarray)): if len(xy[0]) == len(xy[1]): locxy = np.vstack((xy[0], xy[1])).T logging.warning(_('get_ij_from_xy_array - xy is a tuple of 2 arrays, it is converted to a 2D array')) else: locxy = np.array(xy) elif isinstance(xy,list): locxy = np.array(xy) else: locxy = xy.copy() if forcedims2: locij = np.zeros((locxy.shape[0],2), dtype=np.int32) else: locij = np.zeros(locxy.shape, dtype=np.int32) locxy[:,0] -= self.origx locxy[:,1] -= self.origy if abs: locxy[:,0] -= self.translx locxy[:,1] -= self.transly i = np.int32(locxy[:,0] / (self.dx * scale)) j = np.int32(locxy[:,1] / (self.dy * scale)) if aswolf: i += 1 j += 1 if self.nbdims == 3 and not forcedims2: locxy[:,2] -= self.origz if abs: locxy[:,2] -= self.translz k = np.int32(locxy[:,2] / (self.dz * scale)) if aswolf: k += 1 locij[:,0] = i locij[:,1] = j locij[:,2] = k return locij elif self.nbdims == 2 or forcedims2: locij[:,0] = i locij[:,1] = j return locij
[docs] def get_xy_from_ij(self, i:int, j:int, k:int=0, scale:float=1., aswolf:bool=False, abs:bool=True) -> Union[tuple[np.float64,np.float64], tuple[np.float64,np.float64,np.float64]]: """ Get coordinates from indices :param i = index along X coordinate :param j = index along Y coordinate :param k = index along Z coordinate (optional) :param scale = scaling of the spatial resolution (dx,dy,[dz]) :param aswolf = if True, input is one-based (as Wolf VB6 or Fortran), otherwise 0-based (default Python standard) :param abs = if True, add translation to results (x, y, [z]) (coordinate to global space) """ i = np.int32(i) j = np.int32(j) if aswolf: # FIXME Put assertion here. i += -1 j += -1 if abs: x = (np.float64(i) + .5) * (self.dx * scale) + self.origx + self.translx y = (np.float64(j) + .5) * (self.dy * scale) + self.origy + self.transly else: x = (np.float64(i) + .5) * (self.dx * scale) + self.origx y = (np.float64(j) + .5) * (self.dy * scale) + self.origy if self.nbdims == 3: k = np.int32(k) if aswolf: k += -1 if abs: z = (np.float64(k) - .5) * (self.dz * scale) + self.origz + self.translz else: z = (np.float64(k) - .5) * (self.dz * scale) + self.origz return x, y, z elif self.nbdims == 2: return x, y else: raise Exception(_("The number of coordinates is not correct"))
[docs] def get_xy_from_ij_array(self, ij:np.ndarray, scale:float=1., aswolf:bool=False, abs:bool=True) -> np.ndarray: """ Converts array coordinates (numpy cells) to this array's world coodinates. :param ij = numpy array containing (i, j, [k]) indices - shape (n, 2) or (n, 3) :param scale = scaling of the spatial resolution (dx,dy,[dz]) :param aswolf = if True, input is one-based (as Wolf VB6 or Fortran), otherwise 0-based (default Python standard) :param abs = if True, add translation to results (x, y, [z]) (coordinate to global space) ..warning: 'ij' is not the result of np.where() but if you want to use np.where() you can use the following code: ``` np.vstack((ij[0], ij[1])).T ``` """ if isinstance(ij,tuple): if len(ij) == 2: if (isinstance(ij[0],np.ndarray)) and (isinstance(ij[1],np.ndarray)): if len(ij[0]) == len(ij[1]): ij = np.vstack((ij[0], ij[1])).T logging.warning(_('get_xy_from_ij_array - ij is a tuple of 2 arrays, it is converted to a 2D array')) else: ij = np.array(ij) elif isinstance(ij,list): if len(ij) == 2: if (isinstance(ij[0],np.ndarray)) and (isinstance(ij[1],np.ndarray)): if len(ij[0]) == len(ij[1]): ij = np.vstack((ij[0], ij[1])).T logging.warning(_('get_xy_from_ij_array - ij is a list of 2 arrays, it is converted to a 2D array')) else: ij = np.array(ij) if abs: tr_x = self.translx tr_y = self.transly tr_z = self.translz else: tr_x = 0. tr_y = 0. tr_z = 0. if aswolf: decali = -1 decalj = -1 decalk = -1 else: decali = 0 decalj = 0 decalk = 0 xy = np.zeros(ij.shape) xy[:,0] = (np.float64( (ij[:,0])+decali) + .5) * (self.dx*scale) + self.origx + tr_x xy[:,1] = (np.float64( (ij[:,1])+decalj) + .5) * (self.dy*scale) + self.origy + tr_y if self.nbdims == 3 and ij.shape[1]==3: xy[:,2] = (np.float64( (ij[:,2])+decalk) + .5) * (self.dz*scale) + self.origz + tr_z return xy
[docs] def ij2xy(self, i:int, j:int, k:int=0, scale:float=1., aswolf:bool=False, abs:bool=True) -> Union[tuple[np.float64,np.float64], tuple[np.float64,np.float64,np.float64]]: """ alias for get_xy_from_ij """ return self.get_xy_from_ij(i, j, k, scale, aswolf, abs)
[docs] def ij2xy_np(self, ij:np.ndarray, scale:float=1., aswolf:bool=False, abs:bool=True) -> np.ndarray: """ alias for get_xy_from_ij_array :param ij: numpy array containing (i, j, [k]) indices :param scale: scaling of the spatial resolution (dx,dy,[dz]) :param aswolf: if True, input is one-based (as Wolf VB6 or Fortran), otherwise 0-based (default Python standard) :param abs: if True, add translation to results (x, y, [z]) (coordinate to global space) ..warning: 'ij' is not the result of np.where() but if you want to use np.where() you can use the following code: ``` np.vstack((ij[0], ij[1])).T ``` :return: numpy array containing (x, y, [z]) coordinates - shape (n, 2) or (n, 3) """ return self.get_xy_from_ij_array(ij, scale, aswolf, abs)
[docs] def xy2ij(self, x:float, y:float, z:float=0., scale:float=1., aswolf:bool=False, abs:bool=True, forcedims2:bool=False) -> Union[tuple[np.int32,np.int32], tuple[np.int32,np.int32,np.int32]]: """ alias for get_ij_from_xy """ return self.get_ij_from_xy(x, y, z, scale, aswolf, abs, forcedims2)
[docs] def xy2ij_np(self, xy:np.ndarray, scale:float=1., aswolf:bool=False, abs:bool=True) -> np.ndarray: """ alias for get_ij_from_xy_array :param xy: numpy array containing (x, y, [z]) coordinates - shape (n, 2) or (n, 3) :param scale: scaling of the spatial resolution (dx,dy,[dz]) :param aswolf: if True, return if one-based (as Wolf VB6 or Fortran), otherwise 0-based (default Python standard) :param abs: if True, remove translation from (x, y, [z]) (coordinate from global space) :param forcedims2: if True, force to return only 2 indices even if z is supplied :return : numpy array containing (i, j, [k]) indices - shape (n, 2) or (n, 3) """ return self.get_ij_from_xy_array(xy, scale, aswolf, abs)
[docs] def xyz2ijk_np(self, xyz:np.ndarray, scale:float=1., aswolf:bool=False, abs:bool=True) -> np.ndarray: """ alias for get_xy_from_ij_array """ assert xyz.shape[1] == 3, _('xyz must be a 2D array with 3 columns') return self.get_xy_from_ij_array(xyz, scale, aswolf, abs)
[docs] def ijk2xyz_np(self, ijk:np.ndarray, scale:float=1., aswolf:bool=False, abs:bool=True) -> np.ndarray: """ alias for get_xy_from_ij_array """ assert ijk.shape[1] == 3, _('ijk must be a 2D array with 3 columns') return self.get_xy_from_ij_array(ijk, scale, aswolf, abs)
[docs] def find_intersection(self, other:"header_wolf", ij:bool = False) -> Union[tuple[list[float],list[float]], tuple[list[list[float]],list[list[float]]]]: """ Find the intersection of two header :param other: other header :param ij: if True, return indices instead of coordinates :return: None or tuple of two lists of two floats - ([xmin, xmax],[ymin, ymax]) or indices in each header (if ij=True) [[imin1, imax1], [jmin1, jmax1]], [[imin2, imax2], [jmin2, jmax2]] """ mybounds = self.get_bounds() otherbounds = other.get_bounds() if otherbounds[0][0] > mybounds[0][1]: return None elif otherbounds[1][0] > mybounds[1][1]: return None elif otherbounds[0][1] < mybounds[0][0]: return None elif otherbounds[1][1] < mybounds[1][0]: return None else: ox = max(mybounds[0][0], otherbounds[0][0]) oy = max(mybounds[1][0], otherbounds[1][0]) ex = min(mybounds[0][1], otherbounds[0][1]) ey = min(mybounds[1][1], otherbounds[1][1]) if ij: i1, j1 = self.get_ij_from_xy(ox, oy) i2, j2 = self.get_ij_from_xy(ex, ey) i3, j3 = other.get_ij_from_xy(ox, oy) i4, j4 = other.get_ij_from_xy(ex, ey) return ([[i1, i2], [j1, j2]], [[i3, i4], [j3, j4]]) else: return ([ox, ex], [oy, ey])
[docs] def find_union(self, other:Union["header_wolf", list["header_wolf"]]) -> tuple[list[float],list[float]]: """ Find the union of two header :return: tuple of two lists of two floats - ([xmin, xmax],[ymin, ymax]) """ if isinstance(other, list): for cur in other: assert isinstance(cur, header_wolf), _('All elements in the list must be header_wolf instances') [ox,ex], [oy,ey] = self.get_bounds() for cur in other: otherbounds = cur.get_bounds() ox = min(ox, otherbounds[0][0]) oy = min(oy, otherbounds[1][0]) ex = max(ex, otherbounds[0][1]) ey = max(ey, otherbounds[1][1]) else: mybounds = self.get_bounds() otherbounds = other.get_bounds() ox = min(mybounds[0][0], otherbounds[0][0]) oy = min(mybounds[1][0], otherbounds[1][0]) ex = max(mybounds[0][1], otherbounds[0][1]) ey = max(mybounds[1][1], otherbounds[1][1]) return ([ox, ex], [oy, ey])
[docs] def read_txt_header(self, filename:str): """ Read informations from header .txt :param filename: path and filename of the basefile If filename is a Path object, it is converted to a string If filename ends with '.tif', nothing is done because infos are in the .tif file If filename ends with '.flt', a .hdr file must be present and it will be read Otherwise, a filename.txt file must be present """ if isinstance(filename, Path): filename = str(filename) locpath = Path(filename) if filename.endswith('.tif') or filename.endswith('.tiff') : from osgeo import gdal raster:gdal.Dataset raster = gdal.Open(filename) geotr = raster.GetGeoTransform() self.dx = geotr[1] self.dy = abs(geotr[5]) self.origx = geotr[0] self.origy = geotr[3] self.nbx = raster.RasterXSize self.nby = raster.RasterYSize """ https://docs.qgis.org/3.34/en/docs/user_manual/processing_algs/gdal/rasterconversion.html 0 — Use Input Layer Data Type 1 — Byte (Eight bit unsigned integer (quint8)) 2 — Int16 (Sixteen bit signed integer (qint16)) 3 — UInt16 (Sixteen bit unsigned integer (quint16)) 4 — UInt32 (Thirty two bit unsigned integer (quint32)) 5 — Int32 (Thirty two bit signed integer (qint32)) 6 — Float32 (Thirty two bit floating point (float)) 7 — Float64 (Sixty four bit floating point (double)) 8 — CInt16 (Complex Int16) 9 — CInt32 (Complex Int32) 10 — CFloat32 (Complex Float32) 11 — CFloat64 (Complex Float64) 12 — Int8 (Eight bit signed integer (qint8)) """ dtype = raster.GetRasterBand(1).DataType if dtype == 1: self.wolftype = WOLF_ARRAY_FULL_INTEGER8 elif dtype in [2,3]: self.wolftype = WOLF_ARRAY_FULL_INTEGER16 elif dtype in [4,5] : self.wolftype = WOLF_ARRAY_FULL_INTEGER elif dtype ==6: self.wolftype = WOLF_ARRAY_FULL_SINGLE elif dtype == 7: self.wolftype = WOLF_ARRAY_FULL_DOUBLE else: logging.error(_('The datatype of the raster is not supported -- {}'.format(dtype))) logging.error(_('Please convert the raster to a supported datatype - or upgrade the code to support this datatype')) logging.error(_('See : read_txt_header and import_geotif in wolf_array.py')) return elif filename.endswith('.npy') and not os.path.exists(filename + '.txt'): # Il y de fortes chances que cette matrice numpy provienne d'une modélisation GPU # et donc que les coordonnées et la résolution soient disponibles dans un fichier parameters.json if (locpath.parent / 'parameters.json').exists(): with open(locpath.parent / 'parameters.json', 'r') as f: params = json.load(f) if 'parameters' in params.keys(): if "dx" in params['parameters'].keys() : self.dx = float(params['parameters']["dx"]) if "dy" in params['parameters'].keys() : self.dy = float(params['parameters']["dy"]) if "base_coord_x" in params['parameters'].keys() : self.origx = float(params['parameters']["base_coord_x"]) if "base_coord_y" in params['parameters'].keys() : self.origy = float(params['parameters']["base_coord_y"]) self.nullvalue = 99999. else: self.dx = 1. self.dy = 1. self.origx = 0. self.origy = 0. # Numpy format with open(filename, 'rb') as f: version = np.lib.format.read_magic(f) if version[0] == 1: shape, fortran, dtype = np.lib.format.read_array_header_1_0(f) elif version[0] == 2: shape, fortran, dtype = np.lib.format.read_array_header_2_0(f) else: raise ValueError("Unknown numpy version: %s" % version) self.nbx, self.nby = shape if dtype == np.float32: self.wolftype = WOLF_ARRAY_FULL_SINGLE elif dtype == np.float64: self.wolftype = WOLF_ARRAY_FULL_DOUBLE elif dtype == np.int32: self.wolftype = WOLF_ARRAY_FULL_INTEGER elif dtype == np.int16: self.wolftype = WOLF_ARRAY_FULL_INTEGER16 elif dtype == np.uint8: self.wolftype = WOLF_ARRAY_FULL_UINTEGER8 elif dtype == np.int8: self.wolftype = WOLF_ARRAY_FULL_INTEGER8 else: logging.error(_('Unsupported type in numpy file -- Abort loading')) return elif filename.endswith('.flt'): # Fichier .flt if not os.path.exists(filename[:-4] + '.hdr'): logging.warning(_('File {} does not exist -- Retry!'.format(filename[:-4] + '.hdr'))) return f = open(filename[:-4] + '.hdr', 'r') lines = f.read().splitlines() f.close() for curline in lines: if 'NCOLS' in curline.upper(): tmp = curline.split(' ') self.nbx = int(tmp[-1]) elif 'NROWS' in curline.upper(): tmp = curline.split(' ') self.nby = int(tmp[-1]) elif 'XLLCORNER' in curline.upper(): tmp = curline.split(' ') self.origx = float(tmp[-1]) elif 'YLLCORNER' in curline.upper(): tmp = curline.split(' ') self.origy = float(tmp[-1]) elif 'ULXMAP' in curline.upper(): tmp = curline.split(' ') self.origx = float(tmp[-1]) self.flipupd=True elif 'ULYMAP' in curline.upper(): tmp = curline.split(' ') self.origy = float(tmp[-1]) self.flipupd=True elif 'CELLSIZE' in curline.upper(): tmp = curline.split(' ') self.dx = self.dy = float(tmp[-1]) elif 'XDIM' in curline.upper(): tmp = curline.split(' ') self.dx = float(tmp[-1]) elif 'YDIM' in curline.upper(): tmp = curline.split(' ') self.dy = float(tmp[-1]) elif 'NODATA' in curline.upper(): tmp = curline.split(' ') self.nullvalue = float(tmp[-1]) if self.flipupd: self.origy -= self.dy*float(self.nby) else: if not os.path.exists(filename + '.txt'): logging.info(_('File {} does not exist -- Maybe be a parameter.json exists or retry !'.format(filename + '.txt'))) return with open(filename + '.txt', 'r') as f: lines = f.read().splitlines() tmp = lines[0].split(':') self.nbx = int(tmp[1]) tmp = lines[1].split(':') self.nby = int(tmp[1]) tmp = lines[2].split(':') self.origx = float(tmp[1]) tmp = lines[3].split(':') self.origy = float(tmp[1]) tmp = lines[4].split(':') self.dx = float(tmp[1]) tmp = lines[5].split(':') self.dy = float(tmp[1]) tmp = lines[6].split(':') self.wolftype = int(tmp[1]) tmp = lines[7].split(':') self.translx = float(tmp[1]) tmp = lines[8].split(':') self.transly = float(tmp[1]) decal = 9 if self.wolftype == WOLF_ARRAY_FULL_SINGLE_3D: tmp = lines[9].split(':') self.nbz = int(tmp[1]) tmp = lines[10].split(':') self.origz = float(tmp[1]) tmp = lines[11].split(':') self.dz = float(tmp[1]) tmp = lines[12].split(':') self.translz = float(tmp[1]) decal = 13 if self.wolftype in WOLF_ARRAY_MB: tmp = lines[decal].split(':') nb_blocks = int(tmp[1]) decal += 1 for i in range(nb_blocks): curhead = header_wolf() tmp = lines[decal].split(':') curhead.nbx = int(tmp[1]) tmp = lines[decal + 1].split(':') curhead.nby = int(tmp[1]) tmp = lines[decal + 2].split(':') curhead.origx = float(tmp[1]) tmp = lines[decal + 3].split(':') curhead.origy = float(tmp[1]) tmp = lines[decal + 4].split(':') curhead.dx = float(tmp[1]) tmp = lines[decal + 5].split(':') curhead.dy = float(tmp[1]) decal += 6 curhead.translx = self.translx + self.origx curhead.transly = self.transly + self.origy self.head_blocks[getkeyblock(i)] = curhead
[docs] def write_txt_header(self, filename:str, wolftype:int, forceupdate:bool=False): """ Writing the header to a text file Nullvalue is not written :param filename: path and filename with '.txt' extension, which will NOT be automatically added :param wolftype: type of the WOLF_ARRAY_* array :param forceupdate: if True, the file is rewritten even if it already exists """ assert wolftype in [WOLF_ARRAY_CSR_DOUBLE, WOLF_ARRAY_FULL_SINGLE, WOLF_ARRAY_FULL_DOUBLE, WOLF_ARRAY_SYM_DOUBLE, WOLF_ARRAY_FULL_LOGICAL, WOLF_ARRAY_CSR_DOUBLE, WOLF_ARRAY_FULL_INTEGER, WOLF_ARRAY_FULL_SINGLE_3D, WOLF_ARRAY_FULL_INTEGER8, WOLF_ARRAY_FULL_UINTEGER8, WOLF_ARRAY_MB_SINGLE, WOLF_ARRAY_MB_INTEGER, WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_MNAP_INTEGER, WOLF_ARRAY_FULL_INTEGER16_2], _('The type of array is not correct') if not os.path.exists(filename) or forceupdate: with open(filename,'w') as f: """ Ecriture de l'en-tête de Wolf array """ f.write('NbX :\t{0}\n'.format(str(self.nbx))) f.write('NbY :\t{0}\n'.format(str(self.nby))) f.write('OrigX :\t{0}\n'.format(str(self.origx))) f.write('OrigY :\t{0}\n'.format(str(self.origy))) f.write('DX :\t{0}\n'.format(str(self.dx))) f.write('DY :\t{0}\n'.format(str(self.dy))) f.write('TypeEnregistrement :\t{0}\n'.format(str(wolftype))) f.write('TranslX :\t{0}\n'.format(str(self.translx))) f.write('TranslY :\t{0}\n'.format(str(self.transly))) if wolftype == WOLF_ARRAY_FULL_SINGLE_3D: f.write('NbZ :\t{0}\n'.format(str(self.nbz))) f.write('OrigZ :\t{0}\n'.format(str(self.origz))) f.write('DZ :\t{0}\n'.format(str(self.dz))) f.write('TranslZ :\t{0}\n'.format(str(self.translz))) if wolftype in WOLF_ARRAY_MB: f.write('Nb Blocs :\t{0}\n'.format(str(self.nb_blocks))) for i in range(self.nb_blocks): curhead = self.head_blocks[getkeyblock(i)] f.write('NbX :\t{0}\n'.format(str(curhead.nbx))) f.write('NbY :\t{0}\n'.format(str(curhead.nby))) f.write('OrigX :\t{0}\n'.format(str(curhead.origx))) f.write('OrigY :\t{0}\n'.format(str(curhead.origy))) f.write('DX :\t{0}\n'.format(str(curhead.dx))) f.write('DY :\t{0}\n'.format(str(curhead.dy)))
[docs] def is_like(self, other:"header_wolf", check_mb:bool=False) -> bool: """ Comparison of two headers :param other: other header to compare :param check_mb: if True, the comparison is done on the blocks too The nullvalue is not taken into account """ test = True test &= self.origx == other.origx test &= self.origy == other.origy test &= self.origz == other.origz test &= self.translx == other.translx test &= self.transly == other.transly test &= self.translz == other.translz test &= self.dx == other.dx test &= self.dy == other.dy test &= self.dz == other.dz test &= self.nbx == other.nbx test &= self.nby == other.nby test &= self.nbz == other.nbz test &= self.nbdims == other.nbdims if check_mb: test &= self.nb_blocks == other.nb_blocks for block1, block2 in zip(self.head_blocks.values(), other.head_blocks.values()): test &= block1.is_like(block2) return test
[docs] def align2grid(self, x1:float, y1:float, eps:float=0.0001) -> tuple[float,float]: """ Align coordinates to nearest grid point where the grid is defined by the borders of the array. """ if x1-self.origx < 0: x2 = np.round((x1 - self.origx + eps) / self.dx) * self.dx + self.origx else: x2 = np.round((x1 - self.origx - eps) / self.dx) * self.dx + self.origx if y1-self.origy < 0: y2 = np.round((y1 - self.origy + eps) / self.dy) * self.dy + self.origy else: y2 = np.round((y1 - self.origy - eps) / self.dy) * self.dy + self.origy return x2, y2
[docs] def _rasterize_segment(self, x1:float, y1:float, x2:float, y2:float, xstart:float=None, ystart:float=None) -> list[list[float]]: """ Rasterize a segment according to the grid where the grid is defined by the borders of the array. :param x1: x coordinate of the first point :param y1: y coordinate of the first point :param x2: x coordinate of the second point :param y2: y coordinate of the second point :param xstart: x coordinate of the starting point :param ystart: y coordinate of the starting point :return: numpy array of the rasterized segment """ if xstart is None and ystart is None: xstart, ystart = self.align2grid(x1, y1) x2, y2 = self.align2grid(x2, y2) points=[] points.append([xstart, ystart]) length = 99999. prec = min(self.dx, self.dy) direction = np.array([x2-xstart, y2-ystart]) length = np.linalg.norm(direction) direction /= length while length >= prec: if np.abs(direction[0])>= np.abs(direction[1]): xstart += self.dx * np.sign(direction[0]) else: ystart += self.dy * np.sign(direction[1]) points.append([xstart, ystart]) direction = np.array([x2-xstart, y2-ystart]) length = np.linalg.norm(direction) if length > 0.: direction /= length return points
[docs] def rasterize_vector(self, vector2raster:vector, outformat:Union[np.ndarray, vector]=vector) -> Union[np.ndarray,vector]: """ Rasterize a vector according to the grid :param vector2raster: vector to rasterize :param outformat: output format (np.ndarray or vector) """ assert outformat in [np.ndarray, vector], _('outformat must be np.ndarray or vector') # get the vertices of the vector xy = vector2raster.asnparray().tolist() # rasterize the vector rasterized = [] rasterized += self._rasterize_segment(xy[0][0], xy[0][1], xy[1][0], xy[1][1]) for i in range(1, len(xy)-1): out = self._rasterize_segment(xy[i][0], xy[i][1], xy[i+1][0], xy[i+1][1], rasterized[-1][0], rasterized[-1][1]) rasterized += out[1:] # get the indices of the rasterized vector xy = np.array(rasterized) if outformat is np.ndarray: return xy elif outformat is vector: #create new vector newvector = vector() newvector.add_vertices_from_array(xy) return newvector
[docs] def get_xy_infootprint_vect(self, myvect: vector | Polygon, eps:float = 0.) -> tuple[np.ndarray,np.ndarray]: """ Return the coordinates of the cells in the footprint of a vector :param myvect: target vector :return: tuple of two numpy arrays - (coordinates, indices) :param eps: epsilon to avoid rounding errors """ myptsij = self.get_ij_infootprint_vect(myvect, eps=eps) mypts=np.asarray(myptsij.copy(),dtype=np.float64) mypts[:,0] = (mypts[:,0]+.5)*self.dx +self.origx +self.translx mypts[:,1] = (mypts[:,1]+.5)*self.dy +self.origy +self.transly return mypts,myptsij
[docs] def get_ij_infootprint_vect(self, myvect: vector | Polygon, eps:float = 0.) -> np.ndarray: """ Return the indices of the cells in the footprint of a vector :param myvect: target vector :return: numpy array of indices :param eps: epsilon to avoid rounding errors """ if isinstance(myvect, Polygon): xmin, ymin, xmax, ymax = myvect.bounds elif isinstance(myvect, vector): xmin, ymin, xmax, ymax = myvect.xmin, myvect.ymin, myvect.xmax, myvect.ymax else: logging.error(_('The object must be a vector or a Polygon')) return np.array([]) i1, j1 = self.get_ij_from_xy(xmin+eps, ymin+eps) i2, j2 = self.get_ij_from_xy(xmax-eps, ymax-eps) i1 = max(i1,0) # FIXME Why ??? How could i,j be negative ? --> because this fucntion can be called with a vector that is not in the array (e.g. a vector defined by clicks in the UI) j1 = max(j1,0) i2 = min(i2,self.nbx-1) j2 = min(j2,self.nby-1) xv,yv = np.meshgrid(np.arange(i1,i2+1),np.arange(j1,j2+1)) mypts = np.hstack((xv.flatten()[:,np.newaxis],yv.flatten()[:,np.newaxis])) return mypts
[docs] def convert_xy2ij_np(self,xy): """ Convert XY coordinates to IJ indices **(0-based)** with Numpy without any check/options :param xy: = numpy array of shape (n,2) with XY coordinates """ return np.asarray((xy[:,0]-self.origx -self.translx)/self.dx-.5,dtype=np.int32), \ np.asarray((xy[:,1]-self.origy -self.transly)/self.dy-.5,dtype=np.int32)
[docs] def convert_ij2xy_np(self,ij): """ Convert IJ indices **(0-based)** to XY coordinates with Numpy without any check/options :param ij: = numpy array of shape (n,2) with IJ indices """ return np.asarray((ij[:,0]+.5)*self.dx+self.origx +self.translx ,dtype=np.float64), \ np.asarray((ij[:,1]+.5)*self.dy+self.origy +self.transly ,dtype=np.float64)
[docs] class NewArray(wx.Dialog): """ wx GUI interaction to create a new WolfArray Once filled, user/__init__ must call "init_from_new" """ def __init__(self, parent): super(NewArray, self).__init__(parent, title=_('New array'), size=(300, 300), style=wx.DEFAULT_DIALOG_STYLE | wx.TAB_TRAVERSAL | wx.OK) self.SetSizeHints(wx.DefaultSize, wx.DefaultSize) glsizer = self.CreateSeparatedButtonSizer(wx.OK) gSizer1 = wx.GridSizer(6, 2, 0, 0) glsizer.Insert(0, gSizer1) self.m_staticText9 = wx.StaticText(self, wx.ID_ANY, u"dX [m]", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText9.Wrap(-1) gSizer1.Add(self.m_staticText9, 0, wx.ALL, 5) self.dx = wx.TextCtrl(self, wx.ID_ANY, u"1", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.dx, 0, wx.ALL, 5) self.m_staticText10 = wx.StaticText(self, wx.ID_ANY, u"dY [m]", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText10.Wrap(-1) gSizer1.Add(self.m_staticText10, 0, wx.ALL, 5) self.dy = wx.TextCtrl(self, wx.ID_ANY, u"1", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.dy, 0, wx.ALL, 5) self.m_staticText11 = wx.StaticText(self, wx.ID_ANY, u"NbX [-]", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText11.Wrap(-1) gSizer1.Add(self.m_staticText11, 0, wx.ALL, 5) self.nbx = wx.TextCtrl(self, wx.ID_ANY, u"1", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.nbx, 0, wx.ALL, 5) self.m_staticText12 = wx.StaticText(self, wx.ID_ANY, u"NbY [-]", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText12.Wrap(-1) gSizer1.Add(self.m_staticText12, 0, wx.ALL, 5) self.nby = wx.TextCtrl(self, wx.ID_ANY, u"1", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.nby, 0, wx.ALL, 5) self.m_staticText13 = wx.StaticText(self, wx.ID_ANY, u"Origin X [m]", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText13.Wrap(-1) gSizer1.Add(self.m_staticText13, 0, wx.ALL, 5) self.ox = wx.TextCtrl(self, wx.ID_ANY, u"0", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.ox, 0, wx.ALL, 5) self.m_staticText14 = wx.StaticText(self, wx.ID_ANY, u"Origin Y [m]", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText14.Wrap(-1) gSizer1.Add(self.m_staticText14, 0, wx.ALL, 5) self.oy = wx.TextCtrl(self, wx.ID_ANY, u"0", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.oy, 0, wx.ALL, 5) # self.OK = wx.Button( self, wx.ID_ANY, u"Validate", wx.DefaultPosition, wx.DefaultSize, 0 ) # gSizer1.Add( self.OK, 0, wx.ALL, 5 ) self.nbx.SetFocus() self.nbx.SelectAll() self.SetSizer(glsizer) self.Layout() self.Centre(wx.BOTH)
#FIXME : Generalize to 3D
[docs] class CropDialog(wx.Dialog): """ wx GUI interaction to crop 2D array's data Used in "read_data" of a WolfArray """ def __init__(self, parent): super(CropDialog, self).__init__(parent, title=_('Cropping array'), size=(300, 300), style=wx.DEFAULT_DIALOG_STYLE | wx.TAB_TRAVERSAL | wx.OK) self.SetSizeHints(wx.DefaultSize, wx.DefaultSize) glsizer = self.CreateSeparatedButtonSizer(wx.OK) gSizer1 = wx.GridSizer(6, 2, 0, 0) glsizer.Insert(0, gSizer1) self.m_staticText9 = wx.StaticText(self, wx.ID_ANY, u"dX", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText9.Wrap(-1) gSizer1.Add(self.m_staticText9, 0, wx.ALL, 5) self.dx = wx.TextCtrl(self, wx.ID_ANY, u"1", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.dx, 0, wx.ALL, 5) self.m_staticText10 = wx.StaticText(self, wx.ID_ANY, u"dY", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText10.Wrap(-1) gSizer1.Add(self.m_staticText10, 0, wx.ALL, 5) self.dy = wx.TextCtrl(self, wx.ID_ANY, u"1", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.dy, 0, wx.ALL, 5) self.m_staticText11 = wx.StaticText(self, wx.ID_ANY, u"OrigX - lower left corner", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText11.Wrap(-1) gSizer1.Add(self.m_staticText11, 0, wx.ALL, 5) self.ox = wx.TextCtrl(self, wx.ID_ANY, u"1", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.ox, 0, wx.ALL, 5) self.m_staticText12 = wx.StaticText(self, wx.ID_ANY, u"OrigY - lower left corner", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText12.Wrap(-1) gSizer1.Add(self.m_staticText12, 0, wx.ALL, 5) self.oy = wx.TextCtrl(self, wx.ID_ANY, u"1", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.oy, 0, wx.ALL, 5) self.m_staticText13 = wx.StaticText(self, wx.ID_ANY, u"EndX - upper right corner", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText13.Wrap(-1) gSizer1.Add(self.m_staticText13, 0, wx.ALL, 5) self.ex = wx.TextCtrl(self, wx.ID_ANY, u"0", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.ex, 0, wx.ALL, 5) self.m_staticText14 = wx.StaticText(self, wx.ID_ANY, u"EndY - upper right corner", wx.DefaultPosition, wx.DefaultSize, 0) self.m_staticText14.Wrap(-1) gSizer1.Add(self.m_staticText14, 0, wx.ALL, 5) self.ey = wx.TextCtrl(self, wx.ID_ANY, u"0", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) gSizer1.Add(self.ey, 0, wx.ALL, 5) # self.OK = wx.Button( self, wx.ID_ANY, u"Validate", wx.DefaultPosition, wx.DefaultSize, 0 ) # gSizer1.Add( self.OK, 0, wx.ALL, 5 ) self.ox.SetFocus() self.ox.SelectAll() self.SetSizer(glsizer) self.Layout() self.Centre(wx.BOTH)
[docs] def get_header(self): """ Return a header_wolf object with the values of the dialog """ myhead = header_wolf() myhead.origx = float(self.ox.Value) myhead.origy = float(self.oy.Value) myhead.dx = float(self.dx.Value) myhead.dy = float(self.dy.Value) myhead.nbx = int((float(self.ex.Value) - myhead.origx) / myhead.dx) myhead.nby = int((float(self.ey.Value) - myhead.origy) / myhead.dy) return myhead
import string
[docs] class IntValidator(wx.Validator): ''' Validates data as it is entered into the text controls. ''' #---------------------------------------------------------------------- def __init__(self): super(IntValidator, self).__init__() self.Bind(wx.EVT_CHAR, self.OnChar) #----------------------------------------------------------------------
[docs] def Clone(self): '''Required Validator method''' return IntValidator()
#----------------------------------------------------------------------
[docs] def Validate(self, win): return True
#----------------------------------------------------------------------
[docs] def TransferToWindow(self): return True
#----------------------------------------------------------------------
[docs] def TransferFromWindow(self): return True
#----------------------------------------------------------------------
[docs] def OnChar(self, event): keycode = int(event.GetKeyCode()) if keycode < 256: #print keycode key = chr(keycode) if key not in string.digits: return event.Skip()
[docs] class Ops_Array(wx.Frame): """ Operations wx.Frame on WolfArray class This class is used to perform operations on a WolfArray """ def __init__(self, parentarray:"WolfArray", mapviewer=None): """ Init the Ops_Array class :param parentarray: WolfArray to operate on :param mapviewer: WolfMapViewer to update if necessary """ self.parentarray:WolfArray self.parentarray = parentarray from .PyDraw import WolfMapViewer self.mapviewer:WolfMapViewer self.mapviewer = mapviewer self.wx_exists = wx.App.Get() is not None # active objects self.active_vector:vector = None self.active_zone:zone = None self.active_array:WolfArray = self.parentarray self.myzones = Zones(parent=self) self.myzonetmp = zone(name='tmp') self.vectmp = vector(name='tmp') self.fnsave = '' self.myzonetmp.add_vector(self.vectmp, forceparent=True) self.myzones.add_zone(self.myzonetmp, forceparent=True) self.myzones.mapviewer = mapviewer self._levels = [] if self.wx_exists: self.set_GUI() @property
[docs] def idx(self): """ Return the idx of the parentarray """ return self.parentarray.idx
[docs] def get_mapviewer(self): """ Retourne l'instance WolfMapViewer """ return self.mapviewer
[docs] def get_linked_arrays(self): """ Pour compatibilité avec la gestion de vecteur et WolfMapViewer """ if self.is_shared: comp, diff = self._get_comp_elts_diff() ret = {} for elt in comp + diff: ret[elt.idx] = elt return ret else: return {self.parentarray.idx: self.parentarray}
[docs] def set_GUI(self): """Set the wx GUI""" super(Ops_Array, self).__init__(None, title=_('Operators'), size=(600, 700), style=wx.DEFAULT_FRAME_STYLE | wx.TAB_TRAVERSAL) # GUI self.Bind(wx.EVT_CLOSE, self.onclose) self.Bind(wx.EVT_SHOW, self.onshow) self.SetSizeHints(wx.DefaultSize, wx.DefaultSize) # GUI Notebook self.array_ops = wx.Notebook(self, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize) # panel Selection # ----------------- self.selection = wx.Panel(self.array_ops, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.TAB_TRAVERSAL) self.array_ops.AddPage(self.selection, _("Selection"), True) # panel Operations # ----------------- self.operation = wx.Panel(self.array_ops, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.TAB_TRAVERSAL) self.array_ops.AddPage(self.operation, _("Operators"), False) # panel Mask # ----------------- self.mask = wx.Panel(self.array_ops, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.TAB_TRAVERSAL) self.array_ops.AddPage(self.mask, _("Mask"), False) # panel Interpolation # --------------------- # if self.parentarray.nb_blocks>0: # self.Interpolation = None # else: self.Interpolation = wx.Panel(self.array_ops, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.TAB_TRAVERSAL) self.array_ops.AddPage(self.Interpolation, _("Interpolation"), False) # panel Tools/Misc # ----------------- self.tools = wx.Panel(self.array_ops, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.TAB_TRAVERSAL) self.array_ops.AddPage(self.tools, _("Miscellaneous"), False) # panel PALETTE de couleurs # ------------------------- self.Palette = PlotPanel(self.array_ops, wx.ID_ANY, toolbar=False) self.palgrid = CpGrid(self.Palette, wx.ID_ANY, style=wx.WANTS_CHARS | wx.TE_CENTER) self.palapply = wx.Button(self.Palette, wx.ID_ANY, _("Apply"), wx.DefaultPosition, wx.DefaultSize, 0) self.palapply.SetToolTip(_('Apply changes in memory')) self.palgrid.CreateGrid(16, 4) self.palauto = wx.CheckBox(self.Palette, wx.ID_ANY, _("Automatic"), wx.DefaultPosition, wx.DefaultSize, style=wx.CHK_CHECKED) self.palauto.SetToolTip(_('Activating/Deactivating automatic colormap values distribution')) self.uniforminparts = wx.CheckBox(self.Palette, wx.ID_ANY, _("Uniform in parts"), wx.DefaultPosition, wx.DefaultSize, style=wx.CHK_UNCHECKED) self.uniforminparts.SetToolTip(_('Activating/Deactivating linear interpolation')) self.palalpha = wx.CheckBox(self.Palette, wx.ID_ANY, _("Opacity"), wx.DefaultPosition, wx.DefaultSize, style=wx.CHK_CHECKED) self.palalpha.SetToolTip(_('Activating/Deactivating transparency of the array')) self.palshader = wx.CheckBox(self.Palette, wx.ID_ANY, _("Hillshade"), wx.DefaultPosition, wx.DefaultSize, style=wx.CHK_CHECKED) self.palshader.SetToolTip(_('Activating/Deactivating hillshade on colors and create if necessary a gray map')) self.palalphaslider = wx.Slider(self.Palette, wx.ID_ANY, 100, 0, 100, wx.DefaultPosition, wx.DefaultSize, wx.SL_HORIZONTAL, name='palslider') self.palalphaslider.SetToolTip(_('Global opacity (transparent --> opaque)')) self.palalphahillshade = wx.Slider(self.Palette, wx.ID_ANY, 100, 0, 100, wx.DefaultPosition, wx.DefaultSize, wx.SL_HORIZONTAL, name='palalphaslider') self.palalphahillshade.SetToolTip(_('Hillshade transparency (transparent-->opaque)')) self.palazimuthhillshade = wx.Slider(self.Palette, wx.ID_ANY, 315, 0, 360, wx.DefaultPosition, wx.DefaultSize, wx.SL_HORIZONTAL, name='palazimuthslider') self.palazimuthhillshade.SetToolTip(_('Hillshade azimuth (0-->360)')) self.palaltitudehillshade = wx.Slider(self.Palette, wx.ID_ANY, 0, 0, 90, wx.DefaultPosition, wx.DefaultSize, wx.SL_HORIZONTAL, name='palaltitudeslider') self.palaltitudehillshade.SetToolTip(_('Hillshade altitude (0-->90)')) self.palsave = wx.Button(self.Palette, wx.ID_ANY, _("Save to file"), wx.DefaultPosition, wx.DefaultSize, 0) self.palsave.SetToolTip(_('Save colormap on .pal file')) sizer_loadpal = wx.BoxSizer(wx.HORIZONTAL) self.palload = wx.Button(self.Palette, wx.ID_ANY, _("Load from file"), wx.DefaultPosition, wx.DefaultSize, 0) self.palload.SetToolTip(_('Load colormap from .pal file')) self._default_pal = wx.Button(self.Palette, wx.ID_ANY, _("Load precomputed"), wx.DefaultPosition, wx.DefaultSize, 0) self._default_pal.SetToolTip(_('Load a default colormap available in the software')) sizer_loadpal.Add(self.palload, 1, wx.EXPAND) sizer_loadpal.Add(self._default_pal, 1, wx.EXPAND) self.palimage = wx.Button(self.Palette, wx.ID_ANY, _("Create image"), wx.DefaultPosition, wx.DefaultSize, 0) self.palimage.SetToolTip(_('Generate colormap image (horizontal, vertical or both) and save to disk')) self.paldistribute = wx.Button(self.Palette, wx.ID_ANY, _("Evenly spaced"), wx.DefaultPosition, wx.DefaultSize, 0) self.paldistribute.SetToolTip(_('Set colormap values based on minimum+maximum or minimum+step')) if self.parentarray.mypal.automatic: self.palauto.SetValue(1) else: self.palauto.SetValue(0) if self.parentarray.mypal.interval_cst: self.uniforminparts.SetValue(1) else: self.uniforminparts.SetValue(0) self.palalpha.SetValue(1) self.palchoosecolor = wx.Button(self.Palette, wx.ID_ANY, _("Choose color for current value"), wx.DefaultPosition, wx.DefaultSize) self.palchoosecolor.SetToolTip(_('Color dialog box for the current selected value in the grid')) self.Palette.sizerfig.Add(self.palgrid, 1, wx.EXPAND) self.Palette.sizer.Add(self.palauto, 1, wx.EXPAND) self.Palette.sizer.Add(self.uniforminparts, 1, wx.EXPAND) self.Palette.sizer.Add(self.palalpha, 1, wx.EXPAND) self.Palette.sizer.Add(self.palalphaslider, 1, wx.EXPAND) self.Palette.sizer.Add(self.palshader, 1, wx.EXPAND) self.Palette.sizer.Add(self.palalphahillshade, 1, wx.EXPAND) self.Palette.sizer.Add(self.palazimuthhillshade, 1, wx.EXPAND) self.Palette.sizer.Add(self.palaltitudehillshade, 1, wx.EXPAND) self.Palette.sizer.Add(self.palchoosecolor, 1, wx.EXPAND) self.Palette.sizer.Add(self.palapply, 1, wx.EXPAND) self.Palette.sizer.Add(sizer_loadpal, 1, wx.EXPAND) self.Palette.sizer.Add(self.palsave, 1, wx.EXPAND) self.Palette.sizer.Add(self.palimage, 1, wx.EXPAND) self.Palette.sizer.Add(self.paldistribute, 1 , wx.EXPAND) self.array_ops.AddPage(self.Palette, _("Palette"), False) # HISTOGRAMMES # ---------------- self.histo = PlotPanel(self.array_ops, wx.ID_ANY, toolbar=True) self.histoupdate = wx.Button(self.histo, wx.ID_ANY, _("All data..."), wx.DefaultPosition, wx.DefaultSize, 0) self.histoupdatezoom = wx.Button(self.histo, wx.ID_ANY, _("On zoom..."), wx.DefaultPosition, wx.DefaultSize, 0) self.histoupdateerase = wx.Button(self.histo, wx.ID_ANY, _("Erase"), wx.DefaultPosition, wx.DefaultSize, 0) self.histo.sizer.Add(self.histoupdate, 0, wx.EXPAND) self.histo.sizer.Add(self.histoupdatezoom, 0, wx.EXPAND) self.histo.sizer.Add(self.histoupdateerase, 0, wx.EXPAND) self.array_ops.AddPage(self.histo, _("Histogram"), False) # LINKS # ---------------- self.links = wx.Panel(self.array_ops, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, wx.TAB_TRAVERSAL) self.array_ops.AddPage(self.links, _("Links"), False) # Interpolation # ---------------- if self.Interpolation is not None: gSizer1 = wx.GridSizer(0, 2, 0, 0) self.interp2D = wx.Button(self.Interpolation, wx.ID_ANY, _("2D Interpolation on selection"), wx.DefaultPosition, wx.DefaultSize, 0) self.interp2D.SetToolTip(_('Spatial interpolation based on nodes stored in the named groups. \n The interpolation apply only on the current selection.')) gSizer1.Add(self.interp2D, 0, wx.EXPAND) self.interp2D.Bind(wx.EVT_BUTTON, self.interpolation2D) self.m_button7 = wx.Button(self.Interpolation, wx.ID_ANY, _("Stage/Volume/Surface evaluation"), wx.DefaultPosition, wx.DefaultSize, 0) self.m_button7.SetToolTip(_('Evaluate stage-volume-surface relationship.\nResults : csv and array saved on disk\n\n CAUTION : This function will be applied only on the selected area except if you select "all".\nIn the latter case, the computation time could be long if the array are very large.')) if self.parentarray.nb_blocks>0: self.m_button7.Disable() self.m_button7.SetToolTip(_('Evaluate stage-volume-surface relationship.\nResults : arrays and csv file saved on disk\n\nThis function is not available for multi-block arrays.')) gSizer1.Add(self.m_button7, 0, wx.EXPAND) self.m_button7.Bind(wx.EVT_BUTTON, self.volumesurface) self.m_button8 = wx.Button(self.Interpolation, wx.ID_ANY, _("Interpolation on active zone \n polygons"), wx.DefaultPosition, wx.DefaultSize, 0) self.m_button8.SetToolTip(_('Spatial interpolation based on all polygons in active zone')) gSizer1.Add(self.m_button8, 0, wx.EXPAND) self.m_button8.Bind(wx.EVT_BUTTON, self.interp2Dpolygons) self.m_button9 = wx.Button(self.Interpolation, wx.ID_ANY, _("Interpolation on active zone \n 3D polylines"), wx.DefaultPosition, wx.DefaultSize, 0) self.m_button9.SetToolTip(_('Spatial interpolation based on all polylines in active zone')) gSizer1.Add(self.m_button9, 0, wx.EXPAND) self.m_button9.Bind(wx.EVT_BUTTON, self.interp2Dpolylines) self.m_button10 = wx.Button(self.Interpolation, wx.ID_ANY, _("Interpolation on active vector \n polygon"), wx.DefaultPosition, wx.DefaultSize, 0) self.m_button10.SetToolTip(_('Spatial interpolation based on active polygon')) gSizer1.Add(self.m_button10, 0, wx.EXPAND) self.m_button10.Bind(wx.EVT_BUTTON, self.interp2Dpolygon) self.m_button11 = wx.Button(self.Interpolation, wx.ID_ANY, _("Interpolation on active vector \n 3D polyline"), wx.DefaultPosition, wx.DefaultSize, 0) self.m_button11.SetToolTip(_('Spatial interpolation based on active polyline')) gSizer1.Add(self.m_button11, 0, wx.EXPAND) self.m_button11.Bind(wx.EVT_BUTTON, self.interp2Dpolyline) self.Interpolation.SetSizer(gSizer1) self.Interpolation.Layout() gSizer1.Fit(self.Interpolation) # Tools # ---------------- Toolssizer = wx.BoxSizer(wx.VERTICAL) hbox = wx.BoxSizer(wx.HORIZONTAL) self.lbl_nullval = wx.StaticText(self.tools,label=_('Null value')) self.txt_nullval = wx.TextCtrl(self.tools,value=str(self.parentarray.nullvalue), style=wx.TE_CENTER) self.txt_nullval.SetToolTip(_('Array null value')) hbox.Add(self.lbl_nullval, 0, wx.EXPAND|wx.ALL) hbox.Add(self.txt_nullval, 1, wx.EXPAND|wx.ALL) self.ApplyTools = wx.Button(self.tools, wx.ID_ANY, _("Apply null value"), wx.DefaultPosition,wx.DefaultSize, 0) self.nullborder = wx.Button(self.tools, wx.ID_ANY, _("Null border"), wx.DefaultPosition,wx.DefaultSize, 0) self.filter_zone = wx.Button(self.tools, wx.ID_ANY, _("Filter zone"), wx.DefaultPosition,wx.DefaultSize, 0) self.labelling = wx.Button(self.tools, wx.ID_ANY, _("Labelling"), wx.DefaultPosition,wx.DefaultSize, 0) self.extract_selection = wx.Button(self.tools, wx.ID_ANY, _("Extract selection"), wx.DefaultPosition,wx.DefaultSize, 0) cont_sizer = wx.BoxSizer(wx.HORIZONTAL) self._contour_int = wx.Button(self.tools, wx.ID_ANY, _("Contour"), wx.DefaultPosition, wx.DefaultSize, 0) self._contour_list = wx.Button(self.tools, wx.ID_ANY, _("Contour specific"), wx.DefaultPosition, wx.DefaultSize, 0) cont_sizer.Add(self._contour_int, 1, wx.EXPAND) cont_sizer.Add(self._contour_list, 1, wx.EXPAND) Toolssizer.Add(hbox, 0, wx.EXPAND) Toolssizer.Add(self.ApplyTools, 1, wx.EXPAND) Toolssizer.Add(self.nullborder, 1, wx.EXPAND) Toolssizer.Add(self.filter_zone, 1, wx.EXPAND) Toolssizer.Add(self.labelling, 1, wx.EXPAND) Toolssizer.Add(self.extract_selection, 1, wx.EXPAND) Toolssizer.Add(cont_sizer, 1, wx.EXPAND) self.ApplyTools.SetToolTip(_("Apply Nullvalue into memory/object")) self.nullborder.SetToolTip(_("Set null value on the border of the array\n\nYou will be asked for the width of the border (in cells)")) self.filter_zone.SetToolTip(_("Filter the array based on contiguous zones\n\nConservation of the ones which contain selected nodes")) self.labelling.SetToolTip(_("Labelling of contiguous zones using Scipy.label function\n\nReplacing the current values by the labels")) self.extract_selection.SetToolTip(_("Extract the current selection")) self.tools.SetSizer(Toolssizer) self.tools.Layout() Toolssizer.Fit(self.tools) # Selection # ---------------- bSizer15 = wx.BoxSizer(wx.VERTICAL) bSizer21 = wx.BoxSizer(wx.HORIZONTAL) bSizer16 = wx.BoxSizer(wx.VERTICAL) bSizer16_1 = wx.BoxSizer(wx.VERTICAL) bSizer16_2 = wx.BoxSizer(wx.VERTICAL) bSizer16_3 = wx.BoxSizer(wx.VERTICAL) selectmethodChoices = [_("by clicks"), _("inside active vector"), _("inside active zone"), _("inside temporary vector"), _("along active vector"), _("along active zone"), _("along temporary vector")] self.selectmethod = wx.RadioBox(self.selection, wx.ID_ANY, _("How to select nodes?"), wx.DefaultPosition, wx.DefaultSize, selectmethodChoices, 1, wx.RA_SPECIFY_COLS) self.selectmethod.SetSelection(0) self.selectmethod.SetToolTip(_("Selection mode : \n - one by one (keyboard shortcut N) \n- inside the currently activated polygon (keyboard shortcut V) \n- inside the currently activated zone (multipolygons) \n- inside a temporary polygon (keyboard shortcut B) \n- along the currently activated polyline \n- along the currently activated zone (multipolylines) \n- along a temporary polyline")) bSizer16.Add(self.selectmethod, 0, wx.ALL, 5) self.selectrestricttomask = wx.CheckBox(self.selection,wx.ID_ANY,_('Use mask to restrict')) self.selectrestricttomask.SetValue(True) self.selectrestricttomask.SetToolTip(_('If checked, the selection will be restricted by the mask data')) bSizer16.Add(self.selectrestricttomask, 0, wx.ALL, 5) self.LaunchSelection = wx.Button(self.selection, wx.ID_ANY, _("Action !"), wx.DefaultPosition, wx.DefaultSize, 0) # self.LaunchSelection.SetBackgroundColour((0,128,64,255)) self.LaunchSelection.SetDefault() # self.LaunchSelection.SetForegroundColour((255,255,255,255)) font = wx.Font(12, wx.FONTFAMILY_DECORATIVE, 0, 90, underline = False,faceName ="") self.LaunchSelection.SetFont(font) bSizer16.Add(self.LaunchSelection, 0, wx.EXPAND) self.AllSelection = wx.Button(self.selection, wx.ID_ANY, _("Select all nodes"), wx.DefaultPosition, wx.DefaultSize, 0) self.AllSelection.SetToolTip(_("Select all nodes in one click - store 'All' in the selection list")) bSizer16_1.Add(self.AllSelection, 1, wx.EXPAND) memory_sizer = wx.BoxSizer(wx.HORIZONTAL) self.MoveSelection = wx.Button(self.selection, wx.ID_ANY, _("Move selection to..."), wx.DefaultPosition, wx.DefaultSize, 0) self.MoveSelection.SetToolTip(_("Store the current selection in an indexed list -- useful for some interpolation methods")) self.ReselectMemory = wx.Button(self.selection, wx.ID_ANY, _("Reselect from..."), wx.DefaultPosition, wx.DefaultSize, 0) self.ReselectMemory.SetToolTip(_("Reselect the nodes from an indexed list")) memory_sizer.Add(self.MoveSelection, 1, wx.EXPAND) memory_sizer.Add(self.ReselectMemory, 1, wx.EXPAND) bSizer16_1.Add(memory_sizer, 1, wx.EXPAND) reset_sizer = wx.BoxSizer(wx.HORIZONTAL) self.ResetSelection = wx.Button(self.selection, wx.ID_ANY, _("Reset"), wx.DefaultPosition, wx.DefaultSize, 0) self.ResetSelection.SetToolTip(_("Reset the current selection list (keyboard shortcut r)")) self.ResetAllSelection = wx.Button(self.selection, wx.ID_ANY, _("Reset All"), wx.DefaultPosition, wx.DefaultSize, 0) self.ResetAllSelection.SetToolTip(_("Reset the current selection list and the indexed lists (keyboard shortcut R)")) reset_sizer.Add(self.ResetSelection, 1, wx.EXPAND) reset_sizer.Add(self.ResetAllSelection, 1, wx.EXPAND) bSizer16_1.Add(reset_sizer, 1, wx.EXPAND) save_load_sizer = wx.BoxSizer(wx.HORIZONTAL) self.SaveSelection = wx.Button(self.selection, wx.ID_ANY, _("Save"), wx.DefaultPosition, wx.DefaultSize, 0) self.SaveSelection.SetToolTip(_("Save the current selection list to disk")) self.LoadSelection = wx.Button(self.selection, wx.ID_ANY, _("Load"), wx.DefaultPosition, wx.DefaultSize, 0) self.LoadSelection.SetToolTip(_("Load a selection list from disk")) save_load_sizer.Add(self.SaveSelection, 1, wx.EXPAND) save_load_sizer.Add(self.LoadSelection, 1, wx.EXPAND) bSizer16_1.Add(save_load_sizer, 1, wx.EXPAND) clipboad_sizer = wx.BoxSizer(wx.HORIZONTAL) self.to_clipboard_str = wx.Button(self.selection, wx.ID_ANY, _("To clipboard (str)"), wx.DefaultPosition, wx.DefaultSize, 0) self.to_clipboard_str.SetToolTip(_("Copy the current selection to the clipboard as a string")) self.to_clipboard_script = wx.Button(self.selection, wx.ID_ANY, _("To clipboard (script)"), wx.DefaultPosition, wx.DefaultSize, 0) self.to_clipboard_script.SetToolTip(_("Copy the current selection to the clipboard as a script")) clipboad_sizer.Add(self.to_clipboard_str, 1, wx.EXPAND) clipboad_sizer.Add(self.to_clipboard_script, 1, wx.EXPAND) erode_dilate_sizer = wx.BoxSizer(wx.VERTICAL) self.expand_selection = wx.Button(self.selection, wx.ID_ANY, _("Dilate"), wx.DefaultPosition, wx.DefaultSize, 0) self.expand_selection.SetToolTip(_("Expand the current selection to the nearest nodes")) self.contract_selection = wx.Button(self.selection, wx.ID_ANY, _("Erode"), wx.DefaultPosition, wx.DefaultSize, 0) self.contract_selection.SetToolTip(_("Contract the current selection to the nearest nodes")) self.expand_unselect_interior = wx.Button(self.selection, wx.ID_ANY, _("Dilate contour"), wx.DefaultPosition, wx.DefaultSize, 0) self.expand_unselect_interior.SetToolTip(_("Expand the contour of the current selection and unselect the interior nodes")) self.unselect_interior = wx.Button(self.selection, wx.ID_ANY, _("Unselect interior"), wx.DefaultPosition, wx.DefaultSize, 0) self.unselect_interior.SetToolTip(_("Conserve the contour of the current selection and unselect the interior nodes")) er_dil_1 = wx.BoxSizer(wx.HORIZONTAL) er_dil_2 = wx.BoxSizer(wx.HORIZONTAL) er_dil_1.Add(self.expand_selection, 1, wx.EXPAND) er_dil_1.Add(self.contract_selection, 1, wx.EXPAND) er_dil_2.Add(self.expand_unselect_interior, 1, wx.EXPAND) er_dil_2.Add(self.unselect_interior, 1, wx.EXPAND) erode_dilate_sizer.Add(er_dil_1, 1, wx.EXPAND) erode_dilate_sizer.Add(er_dil_2, 1, wx.EXPAND) erode_dilate_options = wx.BoxSizer(wx.HORIZONTAL) self._label_passes = wx.StaticText(self.selection, wx.ID_ANY, _("Passes"), wx.DefaultPosition, wx.DefaultSize, 0) self._erode_dilate_value = wx.TextCtrl(self.selection, wx.ID_ANY, u"1", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) self._erode_dilate_value.SetToolTip(_("Number of passes for the erode/dilate operation")) self._erode_dilate_value.SetValidator(validator=IntValidator()) erode_dilate_options.Add(self._label_passes, 1, wx.EXPAND) erode_dilate_options.Add(self._erode_dilate_value, 1, wx.EXPAND) self._erode_dilate_structure = wx.ComboBox(self.selection, wx.ID_ANY, _("Cross"), wx.DefaultPosition, wx.DefaultSize, ["Cross", "Square"], wx.CB_READONLY) self._erode_dilate_structure.SetToolTip(_("Structuring shape for the erode/dilate operation -- Cross-shaped is the 4 nearest nodes, Square-shaped is the 8 nearest nodes")) erode_dilate_options.Add(self._erode_dilate_structure, 1, wx.EXPAND) erode_dilate_sizer.Add(erode_dilate_options, 1, wx.EXPAND) # MultiBlocks # ---------------- # Add a listbox to define the active blocks if self.parentarray.nb_blocks>0: self._list = wx.ListBox(self.selection, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, [_('All')] + [str(i) for i in range(1, self.parentarray.nb_blocks+1)], style = wx.LB_MULTIPLE | wx.LB_NEEDED_SB) self._list.SetToolTip(_("Active block")) bSizer16.Add(self._list, 1, wx.EXPAND) self._list.Bind(wx.EVT_LISTBOX, self.OnBlockSelect) # self._open_block = wx.Button(self.selection, wx.ID_ANY, _("Open block"), wx.DefaultPosition, # wx.DefaultSize, 0) # self._open_block.SetToolTip(_("Open the Operation manager for the selected block")) # self._open_block.Bind(wx.EVT_BUTTON, self.OnOpenBlock) # bSizer16.Add(self._open_block, 0, wx.EXPAND) bSizer16_1.Add(erode_dilate_sizer, 1, wx.EXPAND, 5) bSizer16_1.Add(clipboad_sizer, 1, wx.EXPAND) bSizer16.Add(bSizer16_1, 1, wx.EXPAND, 5) # bSizer16.Add(bSizer16_2, 1, wx.EXPAND, 5) bSizer21.Add(bSizer16, 1, wx.EXPAND, 5) # VECTORS Manager # ---------------- bSizer17 = wx.BoxSizer(wx.VERTICAL) self.m_button2 = wx.Button(self.selection, wx.ID_ANY, _("Manage vectors"), wx.DefaultPosition, wx.DefaultSize, 0) self.m_button2.SetToolTip(_("Open the vector manager attached to the array")) bSizer17.Add(self.m_button2, 0, wx.EXPAND) self.active_vector_id = wx.StaticText(self.selection, wx.ID_ANY, _("Active vector"), wx.DefaultPosition, wx.DefaultSize, 0) self.active_vector_id.Wrap(-1) bSizer17.Add(self.active_vector_id, 0, wx.EXPAND) self.CurActiveparent = wx.StaticText(self.selection, wx.ID_ANY, _("Active parent"), wx.DefaultPosition, wx.DefaultSize, 0) self.CurActiveparent.Wrap(-1) bSizer17.Add(self.CurActiveparent, 0, wx.EXPAND) self.loadvec = wx.Button(self.selection, wx.ID_ANY, _("Load from file..."), wx.DefaultPosition, wx.DefaultSize, 0) self.loadvec.SetToolTip(_("Load a vector file into the vector manager")) bSizer17.Add(self.loadvec, 0, wx.EXPAND) self.saveas = wx.Button(self.selection, wx.ID_ANY, _("Save as..."), wx.DefaultPosition, wx.DefaultSize, 0) bSizer17.Add(self.saveas, 0, wx.EXPAND) self.saveas.SetToolTip(_("Save the vector manager to a new vector file")) self.save = wx.Button(self.selection, wx.ID_ANY, _("Save"), wx.DefaultPosition, wx.DefaultSize, 0) self.save.SetToolTip(_("Save the vector manager to the kwnown vector file")) bSizer17.Add(self.save, 0, wx.EXPAND) bSizer21.Add(bSizer17, 1, wx.EXPAND, 5) bSizer15.Add(bSizer21, 1, wx.EXPAND, 5) bSizer22 = wx.BoxSizer(wx.HORIZONTAL) self.nbselect = wx.StaticText(self.selection, wx.ID_ANY, _("nb"), wx.DefaultPosition, wx.DefaultSize, 0) self.nbselect.Wrap(-1) bSizer22.Add(self.nbselect, 1, wx.EXPAND, 10) self.minx = wx.StaticText(self.selection, wx.ID_ANY, _("xmin"), wx.DefaultPosition, wx.DefaultSize, 0) self.minx.Wrap(-1) self.minx.SetToolTip(_("X Mininum")) bSizer22.Add(self.minx, 1, wx.EXPAND, 10) self.maxx = wx.StaticText(self.selection, wx.ID_ANY, _("xmax"), wx.DefaultPosition, wx.DefaultSize, 0) self.maxx.Wrap(-1) self.maxx.SetToolTip(_("X Maximum")) bSizer22.Add(self.maxx, 1, wx.EXPAND, 10) self.miny = wx.StaticText(self.selection, wx.ID_ANY, _("ymin"), wx.DefaultPosition, wx.DefaultSize, 0) self.miny.Wrap(-1) self.miny.SetToolTip(_("Y Minimum")) bSizer22.Add(self.miny, 1, wx.EXPAND, 10) self.maxy = wx.StaticText(self.selection, wx.ID_ANY, _("ymax"), wx.DefaultPosition, wx.DefaultSize, 0) self.maxy.Wrap(-1) self.maxy.SetToolTip(_("Y Maximum")) bSizer22.Add(self.maxy, 1, wx.EXPAND, 10) bSizer15.Add(bSizer22, 0, wx.EXPAND, 5) self.selection.SetSizer(bSizer15) self.selection.Layout() bSizer15.Fit(self.selection) # Mask sizermask = wx.BoxSizer(wx.VERTICAL) self.mask.SetSizer(sizermask) maskdata = wx.Button(self.mask, wx.ID_ANY, _("Mask nodes (only Condition )"), wx.DefaultPosition, wx.DefaultSize, 0) maskdata.SetToolTip(_("This action will use the condition AND NOT the operator to mask some selected nodes \n If no node selectd --> Nothing to do !!")) sizermask.Add(maskdata, 1, wx.EXPAND) maskdata.Bind(wx.EVT_BUTTON, self.Onmask) unmaskall = wx.Button(self.mask, wx.ID_ANY, _("Unmask all"), wx.DefaultPosition, wx.DefaultSize, 0) sizermask.Add(unmaskall, 1, wx.EXPAND) unmaskall.Bind(wx.EVT_BUTTON, self.Unmaskall) unmaskall.SetToolTip(_("Unmask all values in the current array")) unmasksel = wx.Button(self.mask, wx.ID_ANY, _("Unmask selection"), wx.DefaultPosition, wx.DefaultSize, 0) sizermask.Add(unmasksel, 1, wx.EXPAND) unmasksel.Bind(wx.EVT_BUTTON, self.Unmasksel) unmasksel.SetToolTip(_("Unmask all values in the current selection \n If you wish to unmask some of the currently masked data, you have to first select the desired nodes by unchecking the 'Use mask to retrict' on the 'Selection' panel, otherwise it is impossible to select these nodes")) invertmask = wx.Button(self.mask, wx.ID_ANY, _("Invert mask"), wx.DefaultPosition, wx.DefaultSize, 0) sizermask.Add(invertmask, 1, wx.EXPAND) invertmask.Bind(wx.EVT_BUTTON, self.InvertMask) invertmask.SetToolTip(_("Logical operation on mask -- mask = ~mask")) self.mask.Layout() sizermask.Fit(self.mask) # Operations sizeropgen = wx.BoxSizer(wx.VERTICAL) sepopcond = wx.BoxSizer(wx.HORIZONTAL) sizerop = wx.BoxSizer(wx.VERTICAL) sizercond = wx.BoxSizer(wx.VERTICAL) # bSizer26 = wx.BoxSizer( wx.VERTICAL ) # bSizer14.Add( bSizer26, 1, wx.EXPAND, 5 ) sepopcond.Add(sizercond, 1, wx.EXPAND) sepopcond.Add(sizerop, 1, wx.EXPAND) sizeropgen.Add(sepopcond, 1, wx.EXPAND) operationChoices = [u"+", u"-", u"*", u"/", _("replace")] self.choiceop = wx.RadioBox(self.operation, wx.ID_ANY, _("Operator"), wx.DefaultPosition, wx.DefaultSize, operationChoices, 1, wx.RA_SPECIFY_COLS) self.choiceop.SetSelection(4) sizerop.Add(self.choiceop, 1, wx.EXPAND) self.opvalue = wx.TextCtrl(self.operation, wx.ID_ANY, u"1", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) sizerop.Add(self.opvalue, 0, wx.EXPAND) self.opvalue.SetToolTip(_('Numeric value or "Null"')) conditionChoices = [u"<", u"<=", u"=", u">=", u">", u"isNaN"] self.condition = wx.RadioBox(self.operation, wx.ID_ANY, _("Condition"), wx.DefaultPosition, wx.DefaultSize, conditionChoices, 1, wx.RA_SPECIFY_COLS) self.condition.SetSelection(2) sizercond.Add(self.condition, 1, wx.EXPAND) self.condvalue = wx.TextCtrl(self.operation, wx.ID_ANY, u"0", wx.DefaultPosition, wx.DefaultSize, style=wx.TE_CENTER) sizercond.Add(self.condvalue, 0, wx.EXPAND) self.ApplyOp = wx.Button(self.operation, wx.ID_ANY, _("Apply math operator (Condition and Operator)"), wx.DefaultPosition, wx.DefaultSize, 0) sizeropgen.Add(self.ApplyOp, 1, wx.EXPAND) self.ApplyOp.SetToolTip(_("This action will use the condition AND the operator to manipulate the selected nodes")) self.SelectOp = wx.Button(self.operation, wx.ID_ANY, _("Select nodes (only Condition)"), wx.DefaultPosition, wx.DefaultSize, 0) self.SelectOp.SetToolTip(_("This action will use the condition AND NOT the operator to select some nodes")) sizeropgen.Add(self.SelectOp, 1, wx.EXPAND) self.nbselect2 = wx.StaticText(self.operation, wx.ID_ANY, _("nb"), wx.DefaultPosition, wx.DefaultSize, 0) self.nbselect2.Wrap(-1) sizeropgen.Add(self.nbselect2, 0, wx.EXPAND) self.nbselect2.SetToolTip(_("Number of selected nodes")) self.operation.SetSizer(sizeropgen) self.operation.Layout() sizeropgen.Fit(self.operation) gensizer = wx.BoxSizer(wx.VERTICAL) gensizer.Add(self.array_ops, 1, wx.EXPAND | wx.ALL) self.SetSizer(gensizer) self.Layout() self.Centre(wx.BOTH) # Connect Events self.LaunchSelection.Bind(wx.EVT_BUTTON, self.OnLaunchSelect) self.AllSelection.Bind(wx.EVT_BUTTON, self.OnAllSelect) self.MoveSelection.Bind(wx.EVT_BUTTON, self.OnMoveSelect) self.ReselectMemory.Bind(wx.EVT_BUTTON, self.OnReselectMemory) self.ResetSelection.Bind(wx.EVT_BUTTON, self.OnResetSelect) self.ResetAllSelection.Bind(wx.EVT_BUTTON, self.OnResetAllSelect) self.to_clipboard_str.Bind(wx.EVT_BUTTON, self.OnToClipboardStr) self.to_clipboard_script.Bind(wx.EVT_BUTTON, self.OnToClipboardStr) self.SaveSelection.Bind(wx.EVT_BUTTON, self.OnSaveSelection) self.LoadSelection.Bind(wx.EVT_BUTTON, self.OnLoadSelection) self.m_button2.Bind(wx.EVT_BUTTON, self.OnManageVectors) self.loadvec.Bind(wx.EVT_BUTTON, self.OnLoadvec) self.saveas.Bind(wx.EVT_BUTTON, self.OnSaveasvec) self.save.Bind(wx.EVT_BUTTON, self.OnSavevec) self.ApplyOp.Bind(wx.EVT_BUTTON, self.OnApplyOpMath) self.ApplyTools.Bind(wx.EVT_BUTTON, self.OnApplyNullvalue) self.nullborder.Bind(wx.EVT_BUTTON, self.OnNullBorder) self.filter_zone.Bind(wx.EVT_BUTTON, self.OnFilterZone) self.labelling.Bind(wx.EVT_BUTTON, self.OnLabelling) self.extract_selection.Bind(wx.EVT_BUTTON, self.OnExtractSelection) self._contour_int.Bind(wx.EVT_BUTTON, self.OnContourInt) self._contour_list.Bind(wx.EVT_BUTTON, self.OnContourList) self.SelectOp.Bind(wx.EVT_BUTTON, self.OnApplyOpSelect) self.palapply.Bind(wx.EVT_BUTTON, self.Onupdatepal) self.palsave.Bind(wx.EVT_BUTTON, self.Onsavepal) self.palload.Bind(wx.EVT_BUTTON, self.Onloadpal) self._default_pal.Bind(wx.EVT_BUTTON, self.Onloaddefaultpal) self.palimage.Bind(wx.EVT_BUTTON, self.Onpalimage) self.paldistribute.Bind(wx.EVT_BUTTON, self.Onpaldistribute) self.palchoosecolor.Bind(wx.EVT_BUTTON, self.OnClickColorPal) self.histoupdate.Bind(wx.EVT_BUTTON, self.OnClickHistoUpdate) self.histoupdatezoom.Bind(wx.EVT_BUTTON, self.OnClickHistoUpdate) self.histoupdateerase.Bind(wx.EVT_BUTTON, self.OnClickHistoUpdate) self.contract_selection.Bind(wx.EVT_BUTTON, self.OnContractSelection) self.expand_selection.Bind(wx.EVT_BUTTON, self.OnExpandSelection) self.expand_unselect_interior.Bind(wx.EVT_BUTTON, self.OnExpandUnselectInterior) self.unselect_interior.Bind(wx.EVT_BUTTON, self.OnUnselectInterior) icon = wx.Icon() icon_path = Path(__file__).parent / "apps/wolf_logo2.bmp" icon.CopyFromBitmap(wx.Bitmap(str(icon_path), wx.BITMAP_TYPE_ANY)) self.SetIcon(icon)
[docs] def OnBlockSelect(self, event): """ Select block """ self.parentarray.active_blocks = self._list.GetSelections()
# def OnOpenBlock(self, event): # """ Open block """ # sel = self._list.GetSelections() # if len(sel)==0: # logging.info('No block selected') # return # elif len(sel)>1: # logging.info('Only one block can be selected') # return # elif sel[0]==0: # logging.info('All blocks selected -- Choose only one specific block') # return # else: # keyblock = getkeyblock(sel[0], addone=False) # ops = self.parentarray.myblocks[keyblock].myops # if ops is not None: # ops.Show()
[docs] def interpolation2D(self, event: wx.MouseEvent): """ calling Interpolation 2D """ keys = list(self.parentarray.SelectionData.selections.keys()) keys = [k for k in keys if len(self.parentarray.SelectionData.selections[k]) >0] if len(keys) > 0: if len(keys) == 1: self.parentarray.interpolation2D(keys[0]) else: with wx.SingleChoiceDialog(self, 'Choose the selection to interpolate', 'Selections', keys) as dlg: if dlg.ShowModal() == wx.ID_OK: selection = dlg.GetStringSelection() self.parentarray.interpolation2D(selection) dlg.Destroy()
[docs] def Unmaskall(self, event: wx.MouseEvent): """ Unmask all values in the current array @author Pierre Archambeau """ self.parentarray.mask_reset() self.refresh_array()
[docs] def Unmasksel(self, event:wx.MouseEvent): """ Enlève le masque des éléments sélectionnés @author Pierre Archambeau """ self.parentarray.SelectionData.Unmasksel()
[docs] def InvertMask(self, event: wx.MouseEvent): """ Invert mask """ self.parentarray.mask_invert() self.refresh_array()
[docs] def interp2Dpolygons(self, event: wx.MouseEvent): """ Bouton d'interpolation sous tous les polygones d'une zone cf WolfArray.interp2Dpolygon """ self.parentarray.SelectionData.interp2Dpolygons(self.active_zone)
[docs] def interp2Dpolygon(self, event: wx.MouseEvent): """ Bouton d'interpolation sous un polygone cf WolfArray.interp2Dpolygon """ self.parentarray.SelectionData.interp2Dpolygon(self.active_vector)
[docs] def interp2Dpolylines(self, event: wx.MouseEvent): """ Bouton d'interpolation sous toutes les polylignes de la zone cf parent.interp2Dpolyline """ self.parentarray.SelectionData.interp2Dpolylines(self.active_zone)
[docs] def interp2Dpolyline(self, event: wx.MouseEvent): """ Bouton d'interpolation sous la polyligne active cf parent.interp2Dpolyline """ self.parentarray.SelectionData.interp2Dpolyline(self.active_vector)
[docs] def volumesurface(self, event): """ Click on evaluation of stage-storage-surface relation """ self.parentarray.SelectionData.volumesurface()
# def _volumesurface(self, show=True): # """ # Evaluation of stage-storage-surface relation # """ # if self.mapviewer is not None: # if self.mapviewer.linked: # array1 = self.mapviewer.linkedList[0].active_array # array2 = self.mapviewer.linkedList[1].active_array # # transfert des mailles sélectionnées dans l'autre matrice # if array1 is self.parentarray: # array2.mngselection.myselection = array1.mngselection.myselection.copy() # if array2 is self.parentarray: # array1.mngselection.myselection = array2.mngselection.myselection.copy() # if len(self.parentarray.mngselection.myselection) == 0 or self.parentarray.mngselection.myselection == 'all': # myarray = array1 # axs = myarray.volume_estimation() # myarray = array2 # axs = myarray.volume_estimation(axs) # else: # myarray = array1.mngselection.get_newarray() # axs = myarray.volume_estimation() # myarray = array2.mngselection.get_newarray() # axs = myarray.volume_estimation(axs) # else: # if len(self.parentarray.mngselection.myselection) == 0 or self.parentarray.mngselection.myselection == 'all': # myarray = self.parentarray # else: # myarray = self.parentarray.mngselection.get_newarray() # myarray.volume_estimation() # else: # if len(self.parentarray.mngselection.myselection) == 0 or self.parentarray.mngselection.myselection == 'all': # myarray = self.parentarray # else: # myarray = self.parentarray.mngselection.get_newarray() # myarray.volume_estimation() # if show: # plt.show()
[docs] def OnAllSelect(self, event): """ Select all --> just put "all" in "myselection" """ self.parentarray.SelectionData.select_all() self.parentarray.myops.nbselect.SetLabelText('All') self.parentarray.myops.nbselect2.SetLabelText('All')
[docs] def OnReselectMemory(self, event): """ Reselect from memory """ if self.parentarray.mngselection is not None: self.parentarray.mngselection.reselect_from_memory()
[docs] def OnMoveSelect(self, event): """Transfert de la sélection courante dans un dictionnaire""" dlg = wx.TextEntryDialog(self, 'Choose id', 'id?') ret = dlg.ShowModal() if ret == wx.ID_CANCEL: logging.info('Cancel transfer') dlg.Destroy() return idtxt = dlg.GetValue() dlg.Destroy() if self.parentarray.SelectionData is not None: if self.parentarray.SelectionData.nb > 0: dlg = wx.ColourDialog(self) ret = dlg.ShowModal() if ret == wx.ID_OK: color = dlg.GetColourData() color = color.GetColour().Get() dlg.Destroy() else: logging.info('Cancel transfer') dlg.Destroy() return else: color = (20,20,20,255) self.parentarray.SelectionData.move_selectionto(idtxt, color)
[docs] def OnContractSelection(self, event): """ Contract selection """ nb = int(self._erode_dilate_value.GetValue()) if self._erode_dilate_structure.GetValue() == 'Cross': structure = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) else: structure = np.ones((3, 3)) usemask = self.selectrestricttomask.GetValue() self.parentarray.SelectionData.erode_selection(nb, usemask, structure) self.refresh_array()
[docs] def OnExpandSelection(self, event): """ Expand selection """ nb = int(self._erode_dilate_value.GetValue()) if self._erode_dilate_structure.GetValue() == 'Cross': structure = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) else: structure = np.ones((3, 3)) usemask = self.selectrestricttomask.GetValue() self.parentarray.SelectionData.dilate_selection(nb, usemask, structure) self.refresh_array()
[docs] def OnExpandUnselectInterior(self, event): """ Expand contour """ nb = int(self._erode_dilate_value.GetValue()) if self._erode_dilate_structure.GetValue() == 'Cross': structure = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) else: structure = np.ones((3, 3)) usemask = self.selectrestricttomask.GetValue() self.parentarray.SelectionData.dilate_contour_selection(nb, usemask, structure) self.refresh_array()
[docs] def OnUnselectInterior(self, event): """ Contract contour """ self.parentarray.SelectionData.erode_contour_selection() self.refresh_array()
[docs] def reset_selection(self): """ Reset of current selection """ self.parentarray.SelectionData.reset() self.nbselect.SetLabelText('0') self.nbselect2.SetLabelText('0') self.minx.SetLabelText('0') self.miny.SetLabelText('0') self.maxx.SetLabelText('0') self.maxy.SetLabelText('0')
[docs] def reset_all_selection(self): """ Reset of current selection and stored ones """ self.reset_selection() self.parentarray.SelectionData.reset_all()
[docs] def OnResetSelect(self, event): """ Click on Reset of current selection """ self.reset_selection() self.refresh_array()
[docs] def OnResetAllSelect(self, event): """ Click on reset all """ self.reset_all_selection() self.refresh_array()
[docs] def OnSaveSelection(self, event): """ Save the current selection """ self.parentarray.SelectionData.save_selection()
[docs] def OnLoadSelection(self, event): """ Load a selection """ self.parentarray.SelectionData.load_selection()
[docs] def OnToClipboardStr(self, event): """ Copy the current selection to the clipboard as a string """ if event.GetId() == self.to_clipboard_str.GetId(): whichtype = 'string' elif event.GetId() == self.to_clipboard_script.GetId(): whichtype = 'script' if self.parentarray.mngselection is not None: selectobj = self.parentarray.mngselection if selectobj.nb > 0: choices = [_("Current selection")] for cur in selectobj.selections.items(): choices.append(cur[0]) dlg = wx.MultiChoiceDialog(None, "Choose the selection to copy", "Choices", choices) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return sel = dlg.GetSelections() dlg.Destroy() else: sel = [0] if len(sel) == 0: return elif len(sel) == 1: sel = int(sel[0]) if sel == 0: sel = None else: sel =choices[sel] self.parentarray.mngselection.copy_to_clipboard(which = sel, typestr=whichtype) else: txt = '' for cursel in sel: if cursel == 0: cursel = None else: cursel = choices[cursel] if whichtype == 'script': txt += self.parentarray.mngselection.get_script(which = cursel) else: txt += self.parentarray.mngselection.get_string(which = cursel) txt += '\n' if wx.TheClipboard.Open(): wx.TheClipboard.Clear() wx.TheClipboard.SetData(wx.TextDataObject(txt)) wx.TheClipboard.Close() else: logging.error('Error in OnToClipboardStr')
[docs] def OnApplyOpSelect(self, event): """ Select nodes based on condition """ # condition operator curcond = self.condition.GetSelection() # condition value curcondvalue = float(self.condvalue.GetValue()) self.parentarray.SelectionData.condition_select(curcond, curcondvalue) self.refresh_array()
[docs] def OnApplyNullvalue(self, event:wx.MouseEvent): """ Apply null value to the array """ newnull = self.txt_nullval.Value if newnull.lower() == 'nan': newnull = np.nan else: newnull = float(newnull) if self.parentarray.nullvalue!= newnull: self.parentarray.nullvalue = newnull self.parentarray.mask_data(newnull) self.refresh_array()
[docs] def refresh_array(self): """ Force refresh of the parent array """ if self.parentarray is not None: self.parentarray.reset_plot()
[docs] def OnNullBorder(self, event:wx.MouseEvent): """ Nullify the border of the array """ dlg = wx.SingleChoiceDialog(None, "Choose the border width [number of nodes]", "Border width", [str(i) for i in range(1, 20)]) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return borderwidth = int(dlg.GetStringSelection()) self.parentarray.nullify_border(borderwidth)
[docs] def OnFilterZone(self, event:wx.MouseEvent): """ Filter the array based on contiguous zones """ pass self.parentarray.filter_zone() dlg = wx.MessageDialog(None, _('Do you want to set null value in the masked data ?'), _('Masked data'), wx.YES_NO | wx.ICON_QUESTION) ret = dlg.ShowModal() if ret == wx.ID_YES: self.parentarray.set_nullvalue_in_mask() dlg.Destroy()
[docs] def OnLabelling(self, event:wx.MouseEvent): """ Labelling of contiguous zones """ self.parentarray.labelling()
[docs] def OnExtractSelection(self, event:wx.MouseEvent): """ Extract the current selection """ self.parentarray.extract_selection()
[docs] def OnContourInt(self, event:wx.MouseEvent): """ Create contour - number of contours """ with wx.NumberEntryDialog(None, 'Number of contours', 'Number of contours', 'Number of contours', 20, 1, 1000) as dlg: if dlg.ShowModal() == wx.ID_OK: nbcontours = dlg.GetValue() logging.info(_('Baking contour')) cont = self.parentarray.contour(levels = nbcontours) logging.info(_('Add contour to viewer')) cont.prep_listogl() mapv = self.get_mapviewer() mapv.add_object('vector', newobj = cont, id = cont.idx) self.get_mapviewer().Paint() logging.info(_('Done !'))
[docs] def OnContourList(self, event:wx.MouseEvent): """ Create contour - list of values """ with wx.TextEntryDialog(None, 'List of specific values separated by comma or tuple (min;max;step)', 'List of values', f'{self.parentarray.array.min()}, {self.parentarray.array.max()}') as dlg: if dlg.ShowModal() == wx.ID_OK: txt = dlg.GetValue() self._levels = [] if ',' in txt: for cur in txt.split(','): if '(' in cur: cur = cur.replace('(', '').replace(')', '') cur = cur.split(';') if len(cur) == 3: minval = float(cur[0]) maxval = float(cur[1]) step = float(cur[2]) self._levels.extend(np.arange(minval, maxval, step)) elif '(' in txt: cur = txt.replace('(', '').replace(')', '') cur = cur.split(';') if len(cur) == 3: minval = float(cur[0]) maxval = float(cur[1]) step = float(cur[2]) self._levels.extend(np.arange(minval, maxval, step)) else: try: self._levels = float(txt) except: logging.error('Error in chain text to float') return if isinstance(self._levels, list): if len(self._levels) == 0: logging.error('Nothing to do !') return logging.info(_('Baking contour')) cont = self.parentarray.contour(levels = self._levels) logging.info(_('Add contour to viewer')) cont.prep_listogl() self.get_mapviewer().add_object('vector', newobj = cont, id = cont.idx) self.get_mapviewer().Paint() logging.info(_('Done !'))
[docs] def OnApplyOpMath(self, event:wx.MouseEvent): """ Apply math operator to the array """ # operator type curop = self.choiceop.GetSelection() # condition type curcond = self.condition.GetSelection() # operator value opval = self.opvalue.GetValue() if opval.lower() == 'null' or opval.lower() == 'nan' or opval.lower() == 'nul': curopvalue = self.parentarray.nullvalue else: try: tmp_float = float(opval) except: logging.error('Error in float conversion - Do you try to set null value ? - Accepted values : "Null" or "NaN"') return curopvalue = tmp_float # condition value curcondvalue = self.condvalue.GetValue() if curcondvalue.lower() == 'null' or curcondvalue.lower() == 'nan' or curcondvalue.lower() == 'nul': curcondvalue = self.parentarray.nullvalue else: try: tmp_float = float(curcondvalue) except: logging.error('Error in float conversion - Do you try to set null value ? - Accepted values : "Null" or "NaN"') return curcondvalue = tmp_float self.parentarray.SelectionData.treat_select(curop, curcond, curopvalue, curcondvalue)
[docs] def Onmask(self, event:wx.MouseEvent): """ Mask nodes based on condition """ curop = self.choiceop.GetSelection() curcond = self.condition.GetSelection() try: curopvalue = float(self.opvalue.GetValue()) except: logging.error('Error in float conversion - operator') return try: curcondvalue = float(self.condvalue.GetValue()) except: logging.error('Error in float conversion - condition') return self.parentarray.SelectionData.mask_condition(curop, curcond, curopvalue, curcondvalue) self.refresh_array()
[docs] def OnManageVectors(self, event:wx.MouseEvent): """ Open vector manager """ self.show_structure_OpsVectors()
[docs] def show_structure_OpsVectors(self): """ Show the structure of the vector manager """ if self.mapviewer is not None: if self.mapviewer.linked: # The viewer is linked to other viewers if self.mapviewer.link_shareopsvect: # The viewer shares the vector manager with the other viewers if self.myzones.get_mapviewer() in self.mapviewer.linkedList: # The viewer is in the active linked viewers self.myzones.showstructure() return self.myzones.showstructure()
[docs] def hide_properties(self): """ Hide the properties panel """ try: self.myzones.hide_properties() self.Hide() except Exception as e: logging.error('Error in hide_properties : %s' % e)
@property
[docs] def is_shared(self): """ Check if the vector manager is shared """ if self.mapviewer is not None: if self.mapviewer.linked: if not self.mapviewer.linkedList is None: comp = None for curviewer in self.mapviewer.linkedList: if curviewer.compare_results is not None: comp = curviewer.compare_results break if comp is not None: elts = comp.elements diff = comp.diff if self.parentarray in elts or self.parentarray in diff and self.mapviewer.link_shareopsvect: return True return False
[docs] def _get_comp_elts_diff(self): """ Get the elements and the differences of the linked arrays """ if self.mapviewer is not None: if self.mapviewer.linked: if not self.mapviewer.linkedList is None: comp = None for curviewer in self.mapviewer.linkedList: if curviewer.compare_results is not None: comp = curviewer.compare_results break if comp is not None: return comp.elements, comp.diff return [], []
[docs] def OnLoadvec(self, event:wx.MouseEvent): """ Load vector file """ dlg = wx.FileDialog(None, 'Select file', wildcard='Vec file (*.vec)|*.vec|Vecz file (*.vecz)|*.vecz|Dxf file (*.dxf)|*.dxf|All (*.*)|*.*', style=wx.FD_OPEN) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return self.fnsave = dlg.GetPath() dlg.Destroy() self.myzones = Zones(self.fnsave, parent= self, shared= self.is_shared) # Link the same vector manager to all the linked arrays if self.mapviewer is not None: if self.mapviewer.linked: self._link_zones() else: self.mapviewer.Refresh()
[docs] def OnSaveasvec(self, event:wx.MouseEvent): """ Save vector file """ dlg = wx.FileDialog(None, 'Select file', wildcard='Vec file (*.vec)|*.vec|Vecz file (*.vecz)|*.vecz|All (*.*)|*.*', style=wx.FD_SAVE) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return self.fnsave = dlg.GetPath() dlg.Destroy() self.myzones.saveas(self.fnsave) # Link the same vector manager to all the linked arrays #FIXME : only works if the active_array is the good one if self.mapviewer is not None: if self.mapviewer.linked: if not self.mapviewer.linkedList is None: for curViewer in self.mapviewer.linkedList: if curViewer.link_shareopsvect: curViewer.active_array.myops.fnsave = self.fnsave
[docs] def OnSavevec(self, event:wx.MouseEvent): """ Save vector file """ if self.fnsave == '': return self.myzones.saveas(self.fnsave)
[docs] def select_node_by_node(self): """ Select nodes by individual clicks Set the right action in the mapviewer who will attend the clicks """ if self.mapviewer is not None: self.mapviewer.start_action('select node by node', _('Please click on the desired nodes...')) self.mapviewer.active_array = self.parentarray self.mapviewer.set_label_selecteditem(self.parentarray.idx)
[docs] def select_zone_inside_manager(self): """ Select nodes inside the active zone (manager) """ if self.active_zone is None: logging.warning(_('Please select an active zone !')) return for curvec in self.active_zone.myvectors: self._select_vector_inside_manager(curvec) self.refresh_array()
[docs] def select_vector_inside_manager(self): """ Select nodes inside the active vector (manager) """ if self.active_vector is None: logging.warning(_('Please select an active vector !')) return if self.active_vector.nbvertices == 0: logging.warning(_('Please add points to vector or select another !')) return logging.info(_('Select nodes inside the active polygon/vector...')) self._select_vector_inside_manager(self.active_vector) self.refresh_array()
[docs] def _select_vector_inside_manager(self, vect: vector): """ Select nodes inside a vector or set action to add vertices to a vector by clicks""" if vect.nbvertices > 2: self.parentarray.SelectionData.select_insidepoly(vect) elif self.mapviewer is not None: if vect.nbvertices < 3: logging.info(_('Please add points to vector !')) self.mapviewer.start_action('select by vector inside', _('Please draw a polygon...')) self.mapviewer.active_array = self.parentarray self.mapviewer.set_label_selecteditem(self.parentarray.idx) self.Active_vector(vect) firstvert = wolfvertex(0., 0.) self.vectmp.add_vertex(firstvert)
[docs] def select_zone_under_manager(self): """ Select nodes along the active zone (manager) """ if self.active_zone is None: logging.warning(_('Please activate a zone !')) return logging.info(_('Select nodes along the active zone - all polylines...')) for curvec in self.active_zone.myvectors: self._select_vector_under_manager(curvec) self.refresh_array()
[docs] def select_vector_under_manager(self): """ Select nodes along the active vector (manager) """ if self.active_vector is None: logging.warning(_('Please activate a vector !')) return logging.info(_('Select nodes along the active polyline/vector...')) self._select_vector_under_manager(self.active_vector) self.refresh_array()
[docs] def _select_vector_under_manager(self, vect: vector): """ Select nodes along a vector or set action to add vertices to a vector by clicks """ if vect.nbvertices > 1: self.parentarray.SelectionData.select_underpoly(vect) elif self.mapviewer is not None: if vect.nbvertices < 2: logging.info(_('Please add points to vector by clicks !')) self.mapviewer.start_action('select by vector along', _('Please draw a polyline...')) self.mapviewer.active_array = self.parentarray self.mapviewer.set_label_selecteditem(self.parentarray.idx) self.Active_vector(vect) firstvert = wolfvertex(0., 0.) self.vectmp.add_vertex(firstvert)
[docs] def select_vector_inside_tmp(self): """ Select nodes inside the temporary vector """ if self.mapviewer is not None: logging.info(_('Select nodes inside a temporary polygon/vector...')) logging.info(_('Please add points to vector by clicks !')) self.mapviewer.start_action('select by tmp vector inside', _('Please draw a polygon...')) self.vectmp.reset() self.Active_vector(self.vectmp) self.mapviewer.active_array = self.parentarray self.mapviewer.set_label_selecteditem(self.parentarray.idx) firstvert = wolfvertex(0., 0.) self.vectmp.add_vertex(firstvert)
[docs] def select_vector_under_tmp(self): """ Select nodes along the temporary vector """ if self.mapviewer is not None: logging.info(_('Select nodes along a temporary polygon/vector...')) logging.info(_('Please add points to vector by clicks !')) self.mapviewer.start_action('select by tmp vector along', _('Please draw a polyline...')) self.vectmp.reset() self.Active_vector(self.vectmp) self.mapviewer.active_array = self.parentarray self.mapviewer.set_label_selecteditem(self.parentarray.idx) firstvert = wolfvertex(0., 0.) self.vectmp.add_vertex(firstvert)
[docs] def OnLaunchSelect(self, event:wx.MouseEvent): """ Action button """ id = self.selectmethod.GetSelection() if id == 0: logging.info(_('Node selection by individual clicks')) logging.info(_('')) logging.info(_(' Clicks on the desired nodes...')) logging.info(_('')) self.select_node_by_node() elif id == 1: logging.info(_('Node selection inside active vector (manager)')) self.select_vector_inside_manager() elif id == 2: logging.info(_('Node selection inside active zone (manager)')) self.select_zone_inside_manager() elif id == 3: logging.info(_('Node selection inside temporary vector')) logging.info(_('')) logging.info(_(' Choose vector by clicks...')) logging.info(_('')) self.select_vector_inside_tmp() elif id == 4: logging.info(_('Node selection along active vector (manager)')) self.select_vector_under_manager() elif id == 5: logging.info(_('Node selection along active zone (manager)')) self.select_zone_under_manager() elif id == 6: logging.info(_('Node selection along temporary vector')) logging.info(_('')) logging.info(_(' Choose vector by clicks...')) logging.info(_('')) self.select_vector_under_tmp()
[docs] def onclose(self, event:wx.MouseEvent): """ Hide the window """ self.Hide()
[docs] def onshow(self, event:wx.MouseEvent): """ Show the window - set string with null value and update palette """ if self.parentarray.nullvalue == np.nan: self.txt_nullval.Value = 'nan' else : self.txt_nullval.Value = str(self.parentarray.nullvalue) self.update_palette()
[docs] def Active_vector(self, vect: vector, copyall:bool=True): """ Set the active vector to vect and forward to mapviewer """ if vect is None: return self.active_vector = vect self.active_vector_id.SetLabelText(vect.myname) if vect.parentzone is not None: self.active_zone = vect.parentzone if self.mapviewer is not None and copyall: self.mapviewer.Active_vector(vect)
[docs] def Active_zone(self, target_zone:zone): """ Set the active zone to target_zone and forward to mapviewer """ self.active_zone = target_zone if self.mapviewer is not None: self.mapviewer.Active_zone(target_zone)
[docs] def update_palette(self): """ Update palette Redraw the palette with Matplotlib and fill the grid with the values and RGB components """ self.Palette.add_ax() fig, ax = self.Palette.get_fig_ax() self.parentarray.mypal.plot(fig, ax) fig.canvas.draw() self.parentarray.mypal.fillgrid(self.palgrid)
[docs] def Onsavepal(self, event:wx.MouseEvent): """ Save palette to file """ myarray: WolfArray myarray = self.parentarray myarray.mypal.savefile()
[docs] def Onloadpal(self, event:wx.MouseEvent): """ Load palette from file """ myarray: WolfArray myarray = self.parentarray myarray.mypal.readfile() myarray.mypal.automatic = False self.palauto.SetValue(0) self.refresh_array()
[docs] def Onloaddefaultpal(self, event:wx.MouseEvent): """ Load default palette """ import glob # list of all .pal file in model directory dirpal = os.path.join(os.path.dirname(__file__), 'models') listpal = glob.glob(dirpal + '/*.pal') if len(listpal) == 0: logging.info('No default palette found') return listpal = [os.path.basename(i) for i in listpal] dlg = wx.SingleChoiceDialog(None, 'Choose the default palette', 'Default palette', listpal) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() self.parentarray.mypal.readfile(dirpal + '/' + dlg.GetStringSelection()) self.parentarray.mypal.automatic = False self.palauto.SetValue(0) self.refresh_array()
[docs] def Onpalimage(self, event:wx.MouseEvent): """ Create image from palette """ myarray: WolfArray myarray = self.parentarray myarray.mypal.export_image()
[docs] def Onpaldistribute(self, event:wx.MouseEvent): """ Evenly spaced values in palette """ myarray: WolfArray myarray = self.parentarray myarray.mypal.distribute_values() myarray.mypal.automatic = False self.palauto.SetValue(0) self.refresh_array()
[docs] def Onupdatepal(self, event:wx.MouseEvent): """ Apply options to palette """ curarray: WolfArray curarray = self.parentarray dellists = False auto = self.palauto.IsChecked() uni = self.uniforminparts.IsChecked() oldalpha = curarray.alpha if self.palalpha.IsChecked(): curarray.alpha=1. else: curarray.alpha = float(self.palalphaslider.GetValue()) / 100. ret = curarray.mypal.updatefromgrid(self.palgrid) if curarray.mypal.automatic != auto or curarray.alpha != oldalpha or ret or auto != curarray.mypal.automatic or uni != curarray.mypal.interval_cst: curarray.mypal.automatic = auto curarray.mypal.interval_cst = uni curarray.updatepalette(0) dellists = True shadehill = self.palshader.IsChecked() if not curarray.shading and shadehill: curarray.shading = True dellists = True if shadehill: azim = float(self.palazimuthhillshade.GetValue()) alti = float(self.palaltitudehillshade.GetValue()) if curarray.azimuthhill != azim: curarray.azimuthhill = azim curarray.shading = True if curarray.altitudehill != alti: curarray.altitudehill = alti curarray.shading = True alpha = float(self.palalphahillshade.GetValue()) / 100. if curarray.shaded is None: logging.error('No shaded array') else: if curarray.shaded.alpha != alpha: curarray.shaded.alpha = alpha curarray.shading = True if dellists: self.refresh_array()
[docs] def OnClickHistoUpdate(self, event: wx.Event): """ Create a histogram of the current array """ itemlabel = event.GetEventObject().GetLabel() fig, ax = self.histo.get_fig_ax() if itemlabel == self.histoupdateerase.LabelText: ax.clear() fig.canvas.draw() return myarray: WolfArray myarray = self.parentarray onzoom = [] if itemlabel == self.histoupdatezoom.LabelText: if self.mapviewer is not None: onzoom = [self.mapviewer.xmin, self.mapviewer.xmax, self.mapviewer.ymin, self.mapviewer.ymax] partarray = myarray.get_working_array(onzoom).flatten(order='F') # .sort(axis=-1) ax: Axis ax.hist(partarray, 200, density=True) fig.canvas.draw()
[docs] def OnClickColorPal(self, event: wx.Event): """ Edit color of a palette item """ gridto = self.palgrid k = gridto.GetGridCursorRow() r = int(gridto.GetCellValue(k, 1)) g = int(gridto.GetCellValue(k, 2)) b = int(gridto.GetCellValue(k, 3)) curcol = wx.ColourData() curcol.SetChooseFull(True) curcol.SetColour(wx.Colour(r, g, b)) dlg = wx.ColourDialog(None, curcol) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return curcol = dlg.GetColourData() rgb = curcol.GetColour() # k = gridto.GetGridCursorRow() gridto.SetCellValue(k, 1, str(rgb.red)) gridto.SetCellValue(k, 2, str(rgb.green)) gridto.SetCellValue(k, 3, str(rgb.blue)) dlg.Destroy()
[docs] class SelectionData(): """ User-selected data in a WolfArray Contains two storage elements : - myselection (list): Current selection which will be lost in the event of a reset - selections( dict): Stored selection(s) to be used, for example, in a spatial interpolation operation. These selections are only lost in the event of a general reset. The selected nodes are stored using their "world" spatial coordinates so that they can be easily transferred to other objects. """
[docs] myselection:list[tuple[float, float]]
[docs] selections: dict[str:dict['select':list[tuple[float, float]], 'idgllist':int, 'color':list[float]]]
def __init__(self, parent:"WolfArray") -> None: self.parent: WolfArray self.parent = parent self.wx_exists = wx.GetApp() is not None self.myselection = [] self.selections = {} self.update_plot_selection = False # force to update OpenGL list if True self.hideselection = False self.numlist_select = 0 # OpenGL list index
[docs] def set_selection_from_list_xy(self, xylist: list[tuple[float, float]]): """ Set the current selection from a list of (x, y) coordinates """ self.myselection = xylist self.update_nb_nodes_selection()
@property
[docs] def dx(self) -> float: """ Resolution in x """ if self.parent is None: return 0. else: return self.parent.dx
@property
[docs] def dy(self) -> float: """ Resolution in y """ if self.parent is None: return 0. else: return self.parent.dy
@property
[docs] def nb(self) -> int: """ Number of selected nodes """ return len(self.myselection)
[docs] def Unmasksel(self, resetplot:bool=True): """ Unmask selection """ curarray: WolfArray curarray = self.parent if self.nb == 0: return else: destxy = self.myselection destij = np.asarray([list(curarray.get_ij_from_xy(x, y)) for x, y in destxy]) curarray.array.mask[destij[:, 0], destij[:, 1]] = False if resetplot: curarray.reset_plot()
[docs] def reset(self): """ Reset the selection """ self.myselection = []
[docs] def reset_all(self): """ Reset the selection """ self.myselection = [] self.selections = {}
[docs] def get_string(self, which:str = None, all_memories:bool= False) -> str: """ Get string of the current selection or of a stored one """ if which is None: curlist = self.myselection txt = 'X\tY\n' else: if str(which) in self.selections: all_memories = False curlist = self.selections[str(which)]['select'] txt = 'Selection {}\n'.format(which) txt += 'Color : {}\n'.format(self.selections[str(which)]['color']) txt += 'X\tY\n' else: logging.error(_('Selection {} does not exist').format(which)) return '' if len(curlist) == 0: return '' if curlist == 'all': txt += 'all\n' return txt for cur in curlist: txt += str(cur[0]) + '\t' + str(cur[1]) + '\n' txt += 'i\tj\t1-based indices\n' for cur in curlist: i,j = self.parent.get_ij_from_xy(cur[0], cur[1], aswolf=True) txt += str(i) + '\t' + str(j) + '\n' if all_memories: for key, cur in self.selections.items(): txt += self.get_string(key) return txt
[docs] def get_script(self, which:int = None) -> str: """ Get script of the current selection or of a stored one """ txt = '# script adapted to a WolfGPU script\n' txt += '# - (i,j) are 1-based for add_boundary_condition -- Do not forget to adapt BC type, value and direction or use BC Manager\n' txt += '# - (i,j) are 0-based for infiltration zones\n\n' if which is None: curlist = self.myselection idx = 0 else: if str(which) in self.selections: txt += '# Selection {}\n'.format(which) curlist = self.selections[str(which)]['select'] idx = which else: logging.error(_('Selection {} does not exist').format(which)) return '' if len(curlist) == 0: return '' txt += '# For boundary conditions :\n' for cur in curlist: i,j = self.parent.get_ij_from_xy(cur[0], cur[1], aswolf=True) txt += "simul.add_boundary_condition(i={}, j={}, bc_type=BoundaryConditionsTypes.FROUDE_NORMAL, bc_value=.3, border=Direction.LEFT)".format(i, j) + '\n' txt += '\n\n# For infiltration zones :\n' for cur in curlist: i,j = self.parent.get_ij_from_xy(cur[0], cur[1], aswolf=True) txt += "infiltration_zones.array[{},{}]={}".format(i-1, j-1, idx) + '\n' txt += '\n\n"""If needed, selection as string :\n' txt += self.get_string(which) txt += '"""\n' return txt
[docs] def copy_to_clipboard(self, which:int = None, typestr:Literal['string', 'script'] = 'string'): """ Copy current selection to clipboard """ if self.wx_exists: if wx.TheClipboard.Open(): wx.TheClipboard.Clear() if typestr == 'string': wx.TheClipboard.SetData(wx.TextDataObject(self.get_string(which))) else: wx.TheClipboard.SetData(wx.TextDataObject(self.get_script(which))) wx.TheClipboard.Close() else: logging.warning(_('Cannot open the clipboard'))
[docs] def reselect_from_memory(self, idx:list[str] = None): """ Reselect a stored selection :param idx: id/key of the selection """ if idx is None: keys = list(self.selections.keys()) keys = [cur for cur in keys if len(self.selections[cur]['select']) > 0] with wx.MultiChoiceDialog(None, "Choose the memory to reselect", "Choices", keys+['All']) as dlg: ret = dlg.ShowModal() if ret == wx.ID_CANCEL: return idx = dlg.GetSelections() if len(idx) == 0: return if len(idx) == 1 and idx[0] == len(keys): idx = keys elif len(idx) in idx: idx = keys else: idx = [keys[i] for i in idx] for curidx in idx: if curidx in self.selections: self.myselection += self.selections[curidx]['select'] else: logging.error(_('Selection {} does not exist').format(idx)) self.update_nb_nodes_selection() self.parent.reset_plot()
[docs] def move_selectionto(self, idx:str, color:list[float], resetplot:bool=True): """ Transfer current selection to dictionary :param idx: id/key of the selection :param color: color of the selection - list of 4 integers between 0 and 255 """ assert len(color) == 4, "color must be a list of 4 integers between 0 and 255" # force idx to be a string idtxt = str(idx) self.selections[idtxt] = {} curdict = self.selections[idtxt] curdict['select'] = self.myselection curdict['idgllist'] = 0 # will be created later - index of OpenGL list curdict['color'] = color self.myselection = [] # reset current selection self.update_nb_nodes_selection() if resetplot: self.parent.reset_plot()
[docs] def plot_selection(self): """ Plot current selection and stored selections """ # Make a copy of the current value of the flag because it will be modified in the function _plot_selection # So, if we want to update the plot, we need to apply the flag on each selection (current ans stored) update_select = self.update_plot_selection if len(self.selections) > 0: # plot stored selections for cur in self.selections.values(): if cur['select'] != 'all': self.update_plot_selection = update_select col = cur['color'] cur['idgllist'] = self._plot_selection(cur['select'], (float(col[0]) / 255., float(col[1]) / 255., float(col[2]) / 255.), cur['idgllist']) if self.myselection != 'all': # plot current selection in RED if not 'all' if len(self.myselection) > 0: self.update_plot_selection = update_select self.numlist_select = self._plot_selection(self.myselection, (1., 0., 0.), self.numlist_select)
[docs] def _plot_selection(self, curlist:list[float], color:list[float], loclist:int=0): """ Plot a selection :param curlist: list of selected nodes -- list of tuples (x,y) :param color: color of the selection - list of 3 floats between 0 and 1 :param loclist: index of OpenGL list """ #FIXME : Is it a good idea to use SHADER rather than list ? if self.update_plot_selection: dx = self.dx dy = self.dy if loclist != 0: glDeleteLists(loclist, 1) loclist = glGenLists(1) glNewList(loclist, GL_COMPILE) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) glBegin(GL_QUADS) for cursel in curlist: x1 = cursel[0] - dx / 2. x2 = cursel[0] + dx / 2. y1 = cursel[1] - dy / 2. y2 = cursel[1] + dy / 2. glColor3f(color[0], color[1], color[2]) glVertex2f(x1, y1) glVertex2f(x2, y1) glVertex2f(x2, y2) glVertex2f(x1, y2) glEnd() glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) for cursel in curlist: glBegin(GL_LINE_STRIP) x1 = cursel[0] - dx / 2. x2 = cursel[0] + dx / 2. y1 = cursel[1] - dy / 2. y2 = cursel[1] + dy / 2. glColor3f(0., 1., 0.) glVertex2f(x1, y1) glVertex2f(x2, y1) glVertex2f(x2, y2) glVertex2f(x1, y2) glVertex2f(x1, y1) glEnd() glEndList() glCallList(loclist) self.update_plot_selection = False else: if loclist != 0: glCallList(loclist) return loclist
[docs] def add_node_to_selection(self, x:float, y:float, verif:bool=True): """ Add one coordinate to the selection :param x: x coordinate :param y: y coordinate :param verif: if True, the coordinates are checked to avoid duplicates """ # on repasse par les i,j car les coordonnées transférées peuvent venir d'un click souris # le but est de ne conserver que les coordonnées des CG de mailles i, j = self.parent.get_ij_from_xy(x, y) if self.parent.check_bounds_ij(i, j): # if i>=0 and j>=0 and i<self.parent.nbx and j<self.parent.nby: self._add_node_to_selectionij(i, j, verif) return 0 # useful for MB else: return -1 # useful for MB
[docs] def add_nodes_to_selection(self, xy:list[float], verif:bool=True): """ Add multiple coordinates to the selection :param xy: list of coordinates :param verif: if True, the coordinates are checked to avoid duplicates """ # on repasse par les i,j car les coordonnées transférées peuvent venir d'un click souris # le but est de ne conserver que les coordonnées des CG de mailles ij = [self.parent.get_ij_from_xy(x, y) for x, y in xy] self._add_nodes_to_selectionij(ij, verif)
[docs] def _add_node_to_selectionij(self, i:int, j:int, verif=True): """ Add one ij coordinate to the selection :param i: i coordinate :param j: j coordinate :param verif: if True, the coordinates are checked to avoid duplicates """ x1, y1 = self.parent.get_xy_from_ij(i, j) if isinstance(self.myselection, str): self.myselection = [] if verif: try: ret = self.myselection.index((x1, y1)) except: ret = -1 if ret >= 0: self.myselection.pop(ret) return 0 else: self.myselection.append((x1, y1)) return 0 else: self.myselection.append((x1, y1)) return 0
[docs] def _add_nodes_to_selectionij(self, ij:list[tuple[float, float]], verif:bool=True): """ Add multiple ij coordinates to the selection :param ij: list of ij coordinates :param verif: if True, the coordinates are checked to avoid duplicates """ if isinstance(self.myselection, str): self.myselection = [] if len(ij)==0: logging.info(_('Nothing to do in add_nodes_to_selectionij !')) return nbini = len(self.myselection) xy = [self.parent.get_xy_from_ij(i, j) for i, j in ij] self.myselection += xy if nbini != 0: if verif: # trouve les éléments uniques dans la liste de tuples (--> axis=0) et retourne également le comptage selunique, counts = np.unique(self.myselection, return_counts=True, axis=0) # les éléments énumérés plus d'une fois doivent être enlevés # on trie par ordre décroissant locsort = sorted(zip(counts.tolist(), selunique.tolist()), reverse=True) counts = [x[0] for x in locsort] sel = [tuple(x[1]) for x in locsort] # on recherche le premier 1 if 1 in counts: idx = counts.index(1) # on ne conserve que la portion de liste utile self.myselection = sel[idx:] else: self.myselection = [] else: self.myselection = np.unique(self.myselection, axis=0)
[docs] def select_insidepoly(self, myvect: vector): """ Select nodes inside a polygon """ nbini = len(self.myselection) myvect.find_minmax() mypoints, _tmpij = self.parent.get_xy_infootprint_vect(myvect) path = mpltPath.Path(myvect.asnparray()) inside = path.contains_points(mypoints) self.hideselection=False if self.parent.myops is not None: if self.parent.myops.selectrestricttomask.IsChecked(): self.hideselection=True self.add_nodes_to_selection(mypoints[np.where(inside)], verif=nbini != 0) if self.parent.myops is not None: if len(self.myselection) > 0: if self.parent.myops.selectrestricttomask.IsChecked(): self.condition_select('Mask',0) self.hideselection=False self.update_nb_nodes_selection()
[docs] def select_underpoly(self, myvect: vector): """ Select nodes along a polyline """ nbini = len(self.myselection) myvect.find_minmax() mypoints = self.parent.get_ij_under_polyline(myvect) if len(mypoints) == 0: logging.info(_('No nodes under the polyline')) return self._add_nodes_to_selectionij(mypoints, verif=nbini != 0) if self.parent.myops is not None: if self.parent.myops.selectrestricttomask.IsChecked(): self.condition_select('Mask',0) self.update_nb_nodes_selection()
[docs] def dilate_selection(self, nb_iterations:int, use_mask:bool = True, structure:np.ndarray = None): """ Extend the selection """ if self.myselection == 'all': logging.info(_('Cannot extend selection when all nodes are selected')) return if len(self.myselection) == 0: logging.info(_('No nodes selected')) return if nb_iterations < 1: logging.info(_('Number of iterations must be greater than 0')) return if self.parent.array is None: logging.info(_('No array to select from')) return from scipy import ndimage xy = self.myselection ij = [self.parent.get_ij_from_xy(x, y) for x, y in xy] selected = np.zeros(self.parent.array.shape, dtype=bool) for i, j in ij: selected[i, j] = True selected = ndimage.binary_dilation(selected, iterations=nb_iterations, mask=~self.parent.array.mask if use_mask else None, structure=structure) ij = np.argwhere(selected) ij = np.vstack([ij[:, 0], ij[:, 1]]).T xy = self.parent.ij2xy_np(ij) self.myselection = [(cur[0], cur[1]) for cur in xy] self.update_nb_nodes_selection()
[docs] def erode_selection(self, nb_iterations:int, use_mask:bool = True, structure:np.ndarray = None): """ Reduce the selection """ if self.myselection == 'all': logging.info(_('Cannot reduce selection when all nodes are selected')) return if len(self.myselection) == 0: logging.info(_('No nodes selected')) return if nb_iterations < 1: logging.info(_('Number of iterations must be greater than 0')) return if self.parent.array is None: logging.info(_('No array to select from')) return from scipy import ndimage xy = self.myselection ij = [self.parent.get_ij_from_xy(x, y) for x, y in xy] selected = np.zeros(self.parent.array.shape, dtype=bool) for i, j in ij: selected[i, j] = True selected = ndimage.binary_erosion(selected, iterations=nb_iterations, mask=~self.parent.array.mask if use_mask else None, structure=structure) ij = np.argwhere(selected) ij = np.vstack([ij[:, 0], ij[:, 1]]).T xy = self.parent.ij2xy_np(ij) self.myselection = [(cur[0], cur[1]) for cur in xy] self.update_nb_nodes_selection()
[docs] def dilate_contour_selection(self, nbiter:int= 1, use_mask:bool = True, structure:np.ndarray = np.ones((3,3))): """ Dilate the contour of the selection """ if self.nb > 0: oldsel = self.myselection.copy() self.dilate_selection(nbiter, use_mask, structure) newsel = self.myselection.copy() self.myselection = [cur for cur in newsel if cur not in oldsel] self.update_nb_nodes_selection() else: logging.info('No selection to expand/dilate')
[docs] def erode_contour_selection(self): """ Erode the contour of the selection """ if self.nb > 0: oldselect = self.myselection.copy() self.erode_selection(1) newselect = self.myselection.copy() self.myselection = [cur for cur in oldselect if cur not in newselect] self.update_nb_nodes_selection() else: logging.info('No selection to contract/erode')
[docs] def save_selection(self, filename:str=None): """ Save the selection to a file """ if filename is None: with wx.FileDialog(None, 'Save selection', wildcard='Text files (*.txt)|*.txt', style=wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) as dlg: if dlg.ShowModal() == wx.ID_CANCEL: return filename = dlg.GetPath() with open(filename, 'w') as f: f.write(self.get_string(all_memories=True))
[docs] def load_selection(self, filename:str=None): """ Load a selection from a file """ if filename is None: with wx.FileDialog(None, 'Load selection', wildcard='Text files (*.txt)|*.txt', style=wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) as dlg: if dlg.ShowModal() == wx.ID_CANCEL: return filename = dlg.GetPath() with open(filename, 'r') as f: lines = f.readlines() xy = [] k=0 for line in lines: if line[0] == 'X': k+=1 continue if line[0] == 'i': k+=1 break x, y = line.split() xy.append((float(x), float(y))) k+=1 self.myselection = xy self.update_nb_nodes_selection() k += len(xy) while k < len(lines): lines = lines[k:] k=0 for line in lines: if 'Selection' in line: idx = line.split()[1] self.selections[idx] = {} xy = [] k+=1 elif 'Color' in line: color = [int(x.replace('[','').replace(']','').replace(',','')) for x in line.split()[2:]] self.selections[idx]['Color'] = color k+=1 elif line[0] == 'X': k+=1 continue elif line[0] == 'i': k+=len(xy)+1 self.selections[idx]['select']=xy break else: x, y = line.split() xy.append((float(x), float(y))) k+=1 self.parent.reset_plot()
[docs] def update_nb_nodes_selection(self): """ Update the number of selected nodes """ if self.myselection=='all': nb = self.parent.nbnotnull else: nb = len(self.myselection) self.update_plot_selection = True if self.wx_exists: if nb > 10000: if not self.hideselection: self.update_plot_selection = False # on met par défaut à False car OpenGL va demander une MAJ de l'affichage le temps que l'utilisateur réponde dlg = wx.MessageDialog(None, 'Large selection !!' + str(nb) + '\n Do you want plot the selected cells?', style=wx.YES_NO) ret = dlg.ShowModal() if ret == wx.ID_YES: self.update_plot_selection = True else: self.update_plot_selection = False self.hideselection = True dlg.Destroy() else: self.update_plot_selection = True if nb>0: if self.myselection=='all': [xmin, xmax], [ymin, ymax] = self.parent.get_bounds() else: xmin = np.min(np.asarray(self.myselection)[:, 0]) ymin = np.min(np.asarray(self.myselection)[:, 1]) xmax = np.max(np.asarray(self.myselection)[:, 0]) ymax = np.max(np.asarray(self.myselection)[:, 1]) else: xmin = -99999. ymin = -99999. xmax = -99999. ymax = -99999. if self.parent.myops is not None: self.parent.myops.nbselect.SetLabelText(str(nb)) self.parent.myops.nbselect2.SetLabelText(str(nb)) if nb>0: self.parent.myops.minx.SetLabelText('{:.3f}'.format(xmin)) self.parent.myops.miny.SetLabelText('{:.3f}'.format(ymin)) self.parent.myops.maxx.SetLabelText('{:.3f}'.format(xmax)) self.parent.myops.maxy.SetLabelText('{:.3f}'.format(ymax)) return nb, xmin, xmax, ymin, ymax
[docs] def condition_select(self, cond, condval, condval2=0, usemask=False): array = self.parent.array nbini = len(self.myselection) if array.dtype == np.float32: condval = np.float32(condval) condval2 = np.float32(condval2) elif array.dtype == np.float64: condval = np.float64(condval) condval2 = np.float64(condval2) elif array.dtype == np.int32: condval = np.int32(condval) condval2 = np.int32(condval2) elif array.dtype == np.int64: condval = np.int64(condval) condval2 = np.int64(condval2) elif array.dtype == np.int16: condval = np.int16(condval) condval2 = np.int16(condval2) elif array.dtype == np.int8: condval = np.int8(condval) condval2 = np.int8(condval2) else: logging.error(_('Unknown dtype in treat_select !')) return if usemask : mask=np.logical_not(array.mask) if nbini == 0: try: if cond == 0 or cond=='<': # < ij = np.argwhere((array < condval) & mask) elif cond == 1 or cond=='<=': # <= ij = np.argwhere((array <= condval) & mask) elif cond == 2 or cond=='==': # == ij = np.argwhere((array == condval) & mask) elif cond == 3 or cond=='>=': # >= ij = np.argwhere((array >= condval) & mask) elif cond == 4 or cond=='>': # > ij = np.argwhere((array > condval) & mask) elif cond == 5 or cond=='NaN': # NaN ij = np.argwhere((np.isnan(array)) & mask) elif cond == 6 or cond=='>=<=': # interval with equality ij = np.argwhere(((array>=condval) & (array<=condval2)) & mask) elif cond == 7 or cond=='><': # interval without equality ij = np.argwhere(((array>condval) & (array<condval2)) & mask) elif cond == 8 or cond=='<>': # interval without equality ij = np.argwhere(((array<condval) | (array>condval2)) & mask) self._add_nodes_to_selectionij(ij, nbini != 0) except: logging.error(_('Error in condition_select -- nbini == 0 ! -- Please report this bug, specifying the context')) return else: try: sel = np.asarray(self.myselection) ijall = np.asarray(self.parent.get_ij_from_xy(sel[:, 0], sel[:, 1])).transpose() if cond == 0 or cond=='<': # < ij = np.argwhere((array[ijall[:, 0], ijall[:, 1]] < condval) & (mask[ijall[:, 0], ijall[:, 1]])) elif cond == 1 or cond=='<=': # <= ij = np.argwhere((array[ijall[:, 0], ijall[:, 1]] <= condval) & (mask[ijall[:, 0], ijall[:, 1]])) elif cond == 2 or cond=='==': # == ij = np.argwhere((array[ijall[:, 0], ijall[:, 1]] == condval) & (mask[ijall[:, 0], ijall[:, 1]])) elif cond == 3 or cond=='>=': # >= ij = np.argwhere((array[ijall[:, 0], ijall[:, 1]] >= condval) & (mask[ijall[:, 0], ijall[:, 1]])) elif cond == 4 or cond=='>': # > ij = np.argwhere((array[ijall[:, 0], ijall[:, 1]] > condval) & (mask[ijall[:, 0], ijall[:, 1]])) elif cond == 5 or cond=='NaN': # NaN ij = np.argwhere((np.isnan(array[ijall[:, 0], ijall[:, 1]])) & (mask[ijall[:, 0], ijall[:, 1]])) elif cond == 6 or cond=='>=<=': # interval with equality ij = np.argwhere(((array[ijall[:, 0], ijall[:, 1]]>=condval) & (array[ijall[:, 0], ijall[:, 1]]<=condval2)) & (mask[ijall[:, 0], ijall[:, 1]])) elif cond == 7 or cond=='><': # interval without equality ij = np.argwhere(((array[ijall[:, 0], ijall[:, 1]]>condval) & (array[ijall[:, 0], ijall[:, 1]]<condval2)) & (mask[ijall[:, 0], ijall[:, 1]])) elif cond == 8 or cond=='<>': # interval without equality ij = np.argwhere(((array[ijall[:, 0], ijall[:, 1]]<condval) | (array[ijall[:, 0], ijall[:, 1]]>condval2)) & (mask[ijall[:, 0], ijall[:, 1]])) ij = ij.flatten() self._add_nodes_to_selectionij(ijall[ij], nbini != 0) except: logging.error(_('Error in condition_select ! -- Please report this bug, specifying the context')) return else: if nbini == 0: try: if cond == 0 or cond=='<': # < ij = np.argwhere(array < condval) elif cond == 1 or cond=='<=': # <= ij = np.argwhere(array <= condval) elif cond == 2 or cond=='==': # == ij = np.argwhere(array == condval) elif cond == 3 or cond=='>=': # >= ij = np.argwhere(array >= condval) elif cond == 4 or cond=='>': # > ij = np.argwhere(array > condval) elif cond == 5 or cond=='NaN': # NaN ij = np.argwhere(np.isnan(array)) elif cond == 6 or cond=='>=<=': # interval with equality ij = np.argwhere((array>=condval) & (array<=condval2)) elif cond == 7 or cond=='><': # interval without equality ij = np.argwhere((array>condval) & (array<condval2)) elif cond == 8 or cond=='<>': # interval without equality ij = np.argwhere((array<condval) | (array>condval2)) elif cond == -1 or cond=='Mask': # Mask ij = np.argwhere(array.mask) elif cond == -2 or cond=='NotMask': # Mask ij = np.argwhere(np.logical_not(array.mask)) self._add_nodes_to_selectionij(ij, nbini != 0) except: logging.error(_('Error in condition_select -- nbini == 0 ! -- Please report this bug, specifying the context')) return else: try: sel = np.asarray(self.myselection) ijall = np.asarray(self.parent.get_ij_from_xy(sel[:, 0], sel[:, 1])).transpose() if cond == 0 or cond=='<': # < ij = np.argwhere(array[ijall[:, 0], ijall[:, 1]] < condval) elif cond == 1 or cond=='<=': # <= ij = np.argwhere(array[ijall[:, 0], ijall[:, 1]] <= condval) elif cond == 2 or cond=='==': # == ij = np.argwhere(array[ijall[:, 0], ijall[:, 1]] == condval) elif cond == 3 or cond=='>=': # >= ij = np.argwhere(array[ijall[:, 0], ijall[:, 1]] >= condval) elif cond == 4 or cond=='>': # > ij = np.argwhere(array[ijall[:, 0], ijall[:, 1]] > condval) elif cond == 5 or cond=='NaN': # NaN ij = np.argwhere(np.isnan(array[ijall[:, 0], ijall[:, 1]])) elif cond == 6 or cond=='>=<=': # interval with equality ij = np.argwhere((array[ijall[:, 0], ijall[:, 1]]>=condval) & (array[ijall[:, 0], ijall[:, 1]]<=condval2)) elif cond == 7 or cond=='><': # interval without equality ij = np.argwhere((array[ijall[:, 0], ijall[:, 1]]>condval) & (array[ijall[:, 0], ijall[:, 1]]<condval2)) elif cond == 8 or cond=='<>': # interval without equality ij = np.argwhere((array[ijall[:, 0], ijall[:, 1]]<condval) | (array[ijall[:, 0], ijall[:, 1]]>condval2) ) elif cond == -1 or cond=='Mask': # Mask ij = np.argwhere(array.mask[ijall[:, 0], ijall[:, 1]]) elif cond == -2 or cond=='NotMask': # Mask ij = np.argwhere(np.logical_not(array.mask[ijall[:, 0], ijall[:, 1]])) ij = ij.flatten() self._add_nodes_to_selectionij(ijall[ij], nbini != 0) except: logging.error(_('Error in condition_select ! -- Please report this bug, specifying the context')) return self.update_nb_nodes_selection()
[docs] def treat_select(self, op, cond, opval, condval): # operationChoices = [ u"+", u"-", u"*", u"/", u"replace'" ] # conditionChoices = [ u"<", u"<=", u"=", u">=", u">",u"isNaN" ] def test(val, cond, condval): if cond == 0: return val < condval elif cond == 1: return val <= condval elif cond == 2: return val == condval elif cond == 3: return val >= condval elif cond == 4: return val > condval elif cond == 5: return np.isnan(val) array = self.parent.array if array.dtype == np.float32: opval = np.float32(opval) condval = np.float32(condval) elif array.dtype == np.float64: opval = np.float64(opval) condval = np.float64(condval) elif array.dtype == np.int32: opval = np.int32(opval) condval = np.int32(condval) elif array.dtype == np.int64: opval = np.int64(opval) condval = np.int64(condval) elif array.dtype == np.int16: opval = np.int16(opval) condval = np.int16(condval) elif array.dtype == np.int8: opval = np.int8(opval) condval = np.int8(condval) else: logging.error(_('Unknown dtype in treat_select !')) return if self.myselection == 'all': if op == 0: if cond == 0: # < ind = np.argwhere(np.logical_and(array < condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] += opval elif cond == 1: # <= ind = np.argwhere(np.logical_and(array <= condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] += opval elif cond == 2: # == ind = np.argwhere(np.logical_and(array == condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] += opval elif cond == 3: # >= ind = np.argwhere(np.logical_and(array >= condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] += opval elif cond == 4: # > ind = np.argwhere(np.logical_and(array > condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] += opval elif cond == 5: # NaN ind = np.argwhere(np.logical_and(np.isnan(array), np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] = opval elif op == 1: if cond == 0: # < ind = np.argwhere(np.logical_and(array < condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] -= opval elif cond == 1: # <= ind = np.argwhere(np.logical_and(array <= condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] -= opval elif cond == 2: # == ind = np.argwhere(np.logical_and(array == condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] -= opval elif cond == 3: # >= ind = np.argwhere(np.logical_and(array >= condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] -= opval elif cond == 4: # > ind = np.argwhere(np.logical_and(array > condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] -= opval elif cond == 5: # NaN ind = np.argwhere(np.logical_and(np.isnan(array), np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] = opval elif op == 2: if cond == 0: # < ind = np.argwhere(np.logical_and(array < condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] *= opval elif cond == 1: # <= ind = np.argwhere(np.logical_and(array <= condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] *= opval elif cond == 2: # == ind = np.argwhere(np.logical_and(array == condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] *= opval elif cond == 3: # >= ind = np.argwhere(np.logical_and(array >= condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] *= opval elif cond == 4: # > ind = np.argwhere(np.logical_and(array > condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] *= opval elif cond == 5: # NaN ind = np.argwhere(np.logical_and(np.isnan(array), np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] = opval elif op == 3 and opval != 0.: if cond == 0: # < ind = np.argwhere(np.logical_and(array < condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] /= opval elif cond == 1: # <= ind = np.argwhere(np.logical_and(array <= condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] /= opval elif cond == 2: # == ind = np.argwhere(np.logical_and(array == condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] /= opval elif cond == 3: # >= ind = np.argwhere(np.logical_and(array >= condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] /= opval elif cond == 4: # > ind = np.argwhere(np.logical_and(array > condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] /= opval elif cond == 5: # NaN ind = np.argwhere(np.logical_and(np.isnan(array), np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] = 0 elif op == 4: if cond == 0: # < ind = np.argwhere(np.logical_and(array < condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] = opval elif cond == 1: # <= ind = np.argwhere(np.logical_and(array <= condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] = opval elif cond == 2: # == ind = np.argwhere(np.logical_and(array == condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] = opval elif cond == 3: # >= ind = np.argwhere(np.logical_and(array >= condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] = opval elif cond == 4: # > ind = np.argwhere(np.logical_and(array > condval, np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] = opval elif cond == 5: # NaN ind = np.argwhere(np.logical_and(np.isnan(array), np.logical_not(array.mask))) array[ind[:, 0], ind[:, 1]] = opval else: if len(self.myselection) == 0: logging.info(_('Nothing to do in treat_select ! -- PLease select some nodes')) return ij = [self.parent.get_ij_from_xy(cur[0], cur[1]) for cur in self.myselection] if op == 0: for i, j in ij: if test(array.data[i, j], cond, condval): array.data[i, j] += opval elif op == 1: for i, j in ij: if test(array.data[i, j], cond, condval): array.data[i, j] -= opval elif op == 2: for i, j in ij: if test(array.data[i, j], cond, condval): array.data[i, j] *= opval elif op == 3 and opval != 0.: for i, j in ij: if test(array.data[i, j], cond, condval): array.data[i, j] /= opval elif op == 4: for i, j in ij: if test(array.data[i, j], cond, condval): array.data[i, j] = opval self.parent.mask_data(self.parent.nullvalue) self.refresh_parantarray()
[docs] def refresh_parantarray(self): """ Refresh the parent array after a selection """ self.parent.reset_plot()
[docs] def mask_condition(self, op, cond, opval, condval): # operationChoices = [ u"+", u"-", u"*", u"/", u"replace'" ] # conditionChoices = [ u"<", u"<=", u"=", u">=", u">",u"isNaN" ] def test(val, cond, condval): if cond == 0: return val < condval elif cond == 1: return val <= condval elif cond == 2: return val == condval elif cond == 3: return val >= condval elif cond == 4: return val > condval elif cond == 5: return np.isnan(val) array = self.parent.array if array.dtype == np.float32: opval = np.float32(opval) condval = np.float32(condval) elif array.dtype == np.float64: opval = np.float64(opval) condval = np.float64(condval) elif array.dtype == np.int32: opval = np.int32(opval) condval = np.int32(condval) elif array.dtype == np.int64: opval = np.int64(opval) condval = np.int64(condval) elif array.dtype == np.int16: opval = np.int16(opval) condval = np.int16(condval) elif array.dtype == np.int8: opval = np.int8(opval) condval = np.int8(condval) else: logging.error(_('Unknown dtype in treat_select !')) return if self.myselection == 'all': if cond == 0: # < ind = np.argwhere(np.logical_and(array < condval, np.logical_not(array.mask))) elif cond == 1: # <= ind = np.argwhere(np.logical_and(array <= condval, np.logical_not(array.mask))) elif cond == 2: # == ind = np.argwhere(np.logical_and(array == condval, np.logical_not(array.mask))) elif cond == 3: # >= ind = np.argwhere(np.logical_and(array >= condval, np.logical_not(array.mask))) elif cond == 4: # > ind = np.argwhere(np.logical_and(array > condval, np.logical_not(array.mask))) elif cond == 5: # NaN ind = np.argwhere(np.logical_and(np.isnan(array), np.logical_not(array.mask))) array.mask[ind[:, 0], ind[:, 1]] = True else: ij = [self.parent.get_ij_from_xy(cur[0], cur[1]) for cur in self.myselection] for i, j in ij: if test(array.data[i, j], cond, condval): array.mask[i, j] = True self.parent.nbnotnull = array.count() self.parent.updatepalette() self.parent.delete_lists()
[docs] def get_values_sel(self): if self.myselection == 'all': return -99999 else: sel = np.asarray(self.myselection) if len(sel) == 1: ijall = np.asarray(self.parent.get_ij_from_xy(sel[0, 0], sel[0, 1])).transpose() z = self.parent.array[ijall[0], ijall[1]] else: ijall = np.asarray(self.parent.get_ij_from_xy(sel[:, 0], sel[:, 1])).transpose() z = self.parent.array[ijall[:, 0], ijall[:, 1]].flatten() return z
[docs] def _get_header(self): """ Header corresponding to the selection """ array = self.parent sel = np.asarray(self.myselection) myhead = header_wolf() if self.dx == 0. or self.dy == 0.: logging.error(_('dx or dy is null in get_header - Abort !')) return None myhead.dx = self.dx myhead.dy = self.dy myhead.translx = 0. myhead.transly = 0. myhead.origx = np.amin(sel[:, 0]) - self.dx / 2. myhead.origy = np.amin(sel[:, 1]) - self.dy / 2. ex = np.amax(sel[:, 0]) + self.dx / 2. ey = np.amax(sel[:, 1]) + self.dy / 2. myhead.nbx = int((ex - myhead.origx) / self.dx) myhead.nby = int((ey - myhead.origy) / self.dy) return myhead
[docs] def get_newarray(self): """ Create a new array from the selection """ if self.nb == 0: return None if self.myselection == 'all': return WolfArray(mold=self.parent) newarray = WolfArray() lochead = self._get_header() if lochead is None: logging.error(_('Error in get_newarray !')) return newarray.init_from_header(self._get_header()) sel = np.asarray(self.myselection) if len(sel) == 1: ijall = np.asarray(self.parent.get_ij_from_xy(sel[0, 0], sel[0, 1])).transpose() z = self.parent.array[ijall[0], ijall[1]] else: ijall = np.asarray(self.parent.get_ij_from_xy(sel[:, 0], sel[:, 1])).transpose() z = self.parent.array[ijall[:, 0], ijall[:, 1]].flatten() newarray.array[:, :] = -99999. newarray.nullvalue = -99999. newarray.set_values_sel(sel, z) return newarray
[docs] def select_all(self): """ Select all nodes """ self.myselection = 'all' self.update_nb_nodes_selection()
[docs] def interp2Dpolygons(self, working_zone:zone, method:Literal["nearest", "linear", "cubic"] = None, resetplot:bool = True): """ Interpolation sous tous les polygones d'une zone cf parent.interp2Dpolygon """ if method is None: choices = ["nearest", "linear", "cubic"] dlg = wx.SingleChoiceDialog(None, "Pick an interpolate method", "Choices", choices) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return method = dlg.GetStringSelection() dlg.Destroy() self.parent.interpolate_on_polygons(working_zone, method) if resetplot: self.parent.reset_plot()
[docs] def interp2Dpolygon(self, working_vector:vector, method:Literal["nearest", "linear", "cubic"] = None, resetplot:bool = True): """ Interpolation sous un polygone cf parent.interp2Dpolygon """ if method is None: choices = ["nearest", "linear", "cubic"] dlg = wx.SingleChoiceDialog(None, "Pick an interpolate method", "Choices", choices) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return method = dlg.GetStringSelection() dlg.Destroy() self.parent.interpolate_on_polygon(working_vector, method) if resetplot: self.parent.reset_plot()
[docs] def interp2Dpolylines(self, working_zone:zone, resetplot:bool = True): """ Interpolation sous toutes les polylignes de la zone cf parent.interp2Dpolyline """ self.parent.interpolate_on_polylines(working_zone) if resetplot: self.parent.reset_plot()
[docs] def interp2Dpolyline(self, working_vector:vector, resetplot:bool = True): """ Interpolation sous la polyligne active cf parent.interp2Dpolyline """ self.parent.interpolate_on_polyline(working_vector) if resetplot: self.parent.reset_plot()
[docs] def copy(self, source:"SelectionData"): self.myselection = source.myselection.copy()
[docs] def volumesurface(self, show=True): """ Evaluation of stage-storage-surface relation """ if self.parent.get_mapviewer() is not None: mapviewer = self.parent.get_mapviewer() if mapviewer.linked: array1:WolfArray = mapviewer.linkedList[0].active_array array2:WolfArray = mapviewer.linkedList[1].active_array # transfert des mailles sélectionnées dans l'autre matrice if array1 is self.parent: array2.SelectionData.copy(array1.SelectionData) if array2 is self.parent: array1.SelectionData.copy(array2.SelectionData) if self.nb == 0 or self.myselection == 'all': myarray = array1 fig, axs = myarray.volume_estimation() myarray = array2 fig, axs = myarray.volume_estimation(axs) else: myarray = array1.mngselection.get_newarray() fig, axs = myarray.volume_estimation() myarray = array2.mngselection.get_newarray() fig, axs = myarray.volume_estimation(axs) else: if len(self.parent.mngselection.myselection) == 0 or self.parent.mngselection.myselection == 'all': myarray = self.parent else: myarray = self.parent.mngselection.get_newarray() myarray.SelectionData.selections = self.parent.mngselection.selections.copy() fig, axs = myarray.volume_estimation() else: if self.nb == 0 or self.myselection == 'all': myarray = self.parent else: myarray = self.get_newarray() myarray.SelectionData.selections = self.selections.copy() fig, axs = myarray.volume_estimation() if show: fig.show()
[docs] class SelectionDataMB(SelectionData): """ Extension of SelectionData to manage multiple blocks """ def __init__(self, parent:"WolfArrayMB"): SelectionData.__init__(self, parent) self.parent:"WolfArrayMB" = parent @property
[docs] def nb(self): return np.sum([cur.SelectionData.nb for cur in self.parent.active_blocks])
[docs] def Unmasksel(self): for curblock in self.parent.active_blocks: curblock.SelectionData.Unmasksel(resetplot=False) self.parent.reset_plot()
[docs] def reset(self): for curblock in self.parent.active_blocks: curblock.SelectionData.reset()
[docs] def select_all(self): for curblock in self.parent.active_blocks: curblock.SelectionData.select_all()
[docs] def reset_all(self): """ Reset the selection """ for curblock in self.parent.active_blocks: curblock.SelectionData.reset_all()
[docs] def get_string(self, which:str = None) -> str: logging.error(_('Not yet implemented for Multi-Blocks'))
[docs] def save_selection(self, filename:str=None, which:str = None): logging.error(_('Not yet implemented for Multi-Blocks'))
[docs] def load_selection(self, filename:str=None, which:str = None): logging.error(_('Not yet implemented for Multi-Blocks'))
[docs] def get_script(self, which:int = None) -> str: logging.error(_('Not yet implemented for Multi-Blocks'))
[docs] def get_newarray(self): logging.error(_('Not yet implemented for Multi-Blocks'))
[docs] def add_node_to_selection(self, x:float, y:float, verif:bool=True): """ Add a node to the selection """ for curblock in self.parent.active_blocks: ret = curblock.SelectionData.add_node_to_selection(x, y, verif)
[docs] def add_nodes_to_selection(self, xy:list[float], verif:bool=True): """ Add nodes to the selection """ for curblock in self.parent.active_blocks: curblock.SelectionData.add_nodes_to_selection(xy, verif)
[docs] def select_insidepoly(self, myvect: vector): for curblock in self.parent.active_blocks: curblock.SelectionData.select_insidepoly(myvect)
[docs] def select_underpoly(self, myvect: vector): for curblock in self.parent.active_blocks: curblock.SelectionData.select_underpoly(myvect)
[docs] def dilate_selection(self, nb_iterations:int, use_mask:bool = True, structure:np.ndarray = None): """ Extend the selection """ for curblock in self.parent.active_blocks: curblock.SelectionData.dilate_selection(nb_iterations, use_mask, structure)
[docs] def erode_selection(self, nb_iterations:int, use_mask:bool = True, structure:np.ndarray = None): """ Reduce the selection """ for curblock in self.parent.active_blocks: curblock.SelectionData.erode_selection(nb_iterations, use_mask, structure)
[docs] def update_nb_nodes_selection(self): """ Update the number of nodes selected """ # Get infos from all blocks ret = [] for curblock in self.parent.active_blocks: ret.append(curblock.SelectionData.update_nb_nodes_selection()) # sum all the nodes nb = np.sum([cur[0] for cur in ret]) if nb > 0 : xmin = np.min([cur[1] for cur in ret if cur[1] != -99999.]) ymin = np.min([cur[3] for cur in ret if cur[3] != -99999.]) xmax = np.max([cur[2] for cur in ret if cur[2] != -99999.]) ymax = np.max([cur[4] for cur in ret if cur[4] != -99999.]) if self.parent.myops is not None: self.parent.myops.nbselect.SetLabelText(str(nb)) self.parent.myops.nbselect2.SetLabelText(str(nb)) if nb>0: self.parent.myops.minx.SetLabelText('{:.3f}'.format(xmin)) self.parent.myops.miny.SetLabelText('{:.3f}'.format(ymin)) self.parent.myops.maxx.SetLabelText('{:.3f}'.format(xmax)) self.parent.myops.maxy.SetLabelText('{:.3f}'.format(ymax)) else: self.parent.myops.minx.SetLabelText('') self.parent.myops.miny.SetLabelText('') self.parent.myops.maxx.SetLabelText('') self.parent.myops.maxy.SetLabelText('')
[docs] def condition_select(self, cond, condval, condval2=0, usemask=False): for curblock in self.parent.active_blocks: curblock.SelectionData.condition_select(cond, condval, condval2, usemask)
[docs] def treat_select(self, op, cond, opval, condval): for curblock in self.parent.active_blocks: curblock.SelectionData.treat_select(op, cond, opval, condval)
[docs] def mask_condition(self, op, cond, opval, condval): for curblock in self.parent.active_blocks: curblock.SelectionData.mask_condition(op, cond, opval, condval)
[docs] def plot_selection(self): for curblock in self.parent.active_blocks: curblock.SelectionData.plot_selection()
[docs] def move_selectionto(self, idx:str, color:list[float]): for curblock in self.parent.active_blocks: curblock.SelectionData.move_selectionto(idx, color, resetplot=False) self.parent.reset_plot()
[docs] def copy_to_clipboard(self, which:int = None, typestr:Literal['string', 'script'] = 'string'): logging.error(_('Not yet implemented for Multi-Blocks'))
[docs] def interp2Dpolygons(self, working_zone:zone, method:Literal["nearest", "linear", "cubic"] = None): """ Interpolation sous tous les polygones d'une zone cf parent.interp2Dpolygon """ if method is None: choices = ["nearest", "linear", "cubic"] dlg = wx.SingleChoiceDialog(None, "Pick an interpolate method", "Choices", choices) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return method = dlg.GetStringSelection() dlg.Destroy() self.parent.interpolate_on_polygons(working_zone, method) self.parent.reset_plot()
[docs] def interp2Dpolygon(self, working_vector:vector, method:Literal["nearest", "linear", "cubic"] = None): """ Interpolation sous un polygone cf parent.interp2Dpolygon """ if method is None: choices = ["nearest", "linear", "cubic"] dlg = wx.SingleChoiceDialog(None, "Pick an interpolate method", "Choices", choices) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return method = dlg.GetStringSelection() dlg.Destroy() self.parent.interpolate_on_polygon(working_vector, method) self.parent.reset_plot()
[docs] def interp2Dpolylines(self, working_zone:zone, resetplot:bool = True): """ Interpolation sous toutes les polylignes de la zone cf parent.interp2Dpolyline """ self.parent.interpolate_on_polylines(working_zone) self.parent.reset_plot()
[docs] def interp2Dpolyline(self, working_vector:vector, resetplot:bool = True): """ Interpolation sous la polyligne active cf parent.interp2Dpolyline """ self.parent.interpolate_on_polyline(working_vector) self.parent.reset_plot()
[docs] def volumesurface(self, show=True): """ Evaluation of stage-storage-surface relation """ logging.error(_('Not yet implemented for Multi-Blocks'))
[docs] class WolfArray(Element_To_Draw, header_wolf): """ Classe pour l'importation de WOLF arrays simple précision, double précision, entier... """
[docs] array: ma.masked_array
[docs] mygrid: dict # For OpenGL
[docs] linkedvec: vector # used in some operations
[docs] linkedarrays: list["WolfArray"] # used in some operations
# Origin and translation of the coordinate-system # in which the array-data coordinates are expressed.
[docs] origx: float
[docs] origy: float
[docs] origz: float
[docs] translx: float
[docs] transly: float
[docs] translz: float
[docs] myops: Ops_Array
def __init__(self, fname:str = None, mold:"WolfArray" = None, masknull:bool = True, crop:list[list[float],list[float]]=None, whichtype = WOLF_ARRAY_FULL_SINGLE, preload:bool = True, create:bool = False, mapviewer = None, nullvalue:float = 0., srcheader:header_wolf = None, idx:str = '', plotted:bool = False, need_for_wx:bool = False, mask_source:np.ndarray = None, np_source:np.ndarray = None, ) -> None: """ Constructor of the WolfArray class :param fname: filename/filepath - if provided, the file will be read on disk :param mold: initialize from a copy a the mold object --> must be a WolArray if not None :param masknull: mask data based on the nullvalue :param crop: crop data based on the spatial extent [[xmin, xmax],[ymin,ymax]] :param whichtype: type of the numpy array (float32 as default) :param preload: True = load data during initialization ; False = waits for the display to be required :param create: True = create a new array from wxDialog :param mapviewer: WolfMapViewer instance to display data :param nullvalue: null value used to mask data :param srcheader: initialize dimension from header_wolf instance :param idx: indentity --> required by the mapviewer :param plotted: True = will be plotted if required by the mapviewer :param need_for_wx: True = a wxApp is required (if no application is underway --> Error) :param mask_source: mask to link to the data :param np_source: numpy array to link to the data """ try: pass # wolfogl.powermode('ON') except PermissionError: print(_('wolfogl not available -- Pleas check your wolfhece installation')) Element_To_Draw.__init__(self, idx, plotted, mapviewer, need_for_wx) header_wolf.__init__(self) self.mngselection = None self.myblocks = None self._active_blocks = None self.flipupd=False self.array:ma.masked_array = None # numpy masked array to stored numerical data self.linkedvec = None self.linkedarrays = [] self.filename = '' self.isblock = False self.blockindex = 0 self.wolftype = whichtype self.preload = preload self.loaded = False self.masknull = masknull if VERSION_RGB==1 : self.rgb = None # numpy array with colorize values self.alpha = 1. # transparency alpha value self.shading = False # if True, rgb will be shaded self.azimuthhill = 315. # sun position - azimuth self.altitudehill = 0. # sun position - altitude if self.wolftype != WOLF_ARRAY_HILLSHAPE and mapviewer is not None: self.shaded = WolfArray(whichtype=WOLF_ARRAY_HILLSHAPE) self.shaded.mypal.defaultgray() self.shaded.mypal.automatic = False else: self.shaded = None self._nullvalue = nullvalue self.nbnotnull = 99999 # number of non-null values in the entire aray self.nbnotnullzoom = 99999 # number of non-null values in the current visible part in mapviwer self.nbtoplot = 0 self.gridsize = 100 # virtual grid for plotting operations self.gridmaxscales = -1 # maximum scale used # colormap self.mypal = wolfpalette(None, "Palette of colors") self.mypal.default16() self.mypal.automatic = True self.mygrid = {} self._array3d = None self.viewers3d:list[WolfArray_plot3D] = [] self.cropini = crop if isinstance(srcheader, header_wolf): header=srcheader self.origx = header.origx self.origy = header.origy self.origz = header.origz self.translx = header.translx self.transly = header.transly self.translz = header.translz self.dx = header.dx self.dy = header.dy self.dz = header.dz self.nbx = header.nbx self.nby = header.nby self.nbz = header.nbz self.head_blocks = header.head_blocks.copy() if self.nb_blocks>0: self.myblocks = {} if np_source is None: self.allocate_ressources() else: assert np_source.shape == (self.nbx, self.nby), _('Shape of np_source is not compatible with header') if self.dtype != np_source.dtype: logging.warning(_('dtype of np_source is not compatible with header -- Conversion will be done')) np_source = np_source.astype(self.dtype) self.array = ma.MaskedArray(np_source, mask= np_source[:,:] == self.nullvalue, copy=False, order='C') # # FIXME Why not initialize with nullvalue ? # self.array = ma.MaskedArray(np.ones((self.nbx, self.nby), order='F', dtype=self.dtype)) if fname is not None: self.filename = str(fname) logging.info(_('Loading file : %s') % self.filename) self.read_all() if mask_source is not None: logging.info(_('Applying mask from source')) self.copy_mask_log(mask_source) logging.info(_('Data masked')) elif masknull and (self.preload or self.loaded): logging.info(_('Masking data with nullvalue')) self.mask_data(self.nullvalue) logging.info(_('Data masked')) elif mold is not None: if self.cropini is None: self.nbx = mold.nbx self.nby = mold.nby self.nbz = mold.nbz self.dx = mold.dx self.dy = mold.dy self.dz = mold.dz self.origx = mold.origx self.origy = mold.origy self.origz = mold.origz self.translx = mold.translx self.transly = mold.transly self.translz = mold.translz self.array = ma.copy(mold.array) if idx=='': self.idx = mold.idx else: imin, jmin = mold.get_ij_from_xy(self.cropini[0][0], self.cropini[1][0]) imax, jmax = mold.get_ij_from_xy(self.cropini[0][1], self.cropini[1][1]) imin = int(imin) jmin = int(jmin) imax = int(imax) jmax = int(jmax) self.nbx = imax - imin self.nby = jmax - jmin self.dx = mold.dx self.dy = mold.dy self.origx, self.origy = mold.get_xy_from_ij(imin, jmin) self.origx -= self.dx / 2. self.origy -= self.dy / 2. self.translx = mold.translx self.transly = mold.transly if idx=='': self.idx = mold.idx self.array = ma.copy(mold.array[imin:imax, jmin:jmax]) elif create: assert self.wx_exists, _('Array creation required a running wx App to display the UI') # Dialog for the creation of a new array new = NewArray(None) ret = new.ShowModal() if ret == wx.ID_CANCEL: return else: self.init_from_new(new) self.add_ops_sel() # Ajout d'un gestionnaire de sélection et d'opérations
[docs] def set_opacity(self, alpha:float): """ Set the transparency of the array """ if alpha <0.: alpha = 0. if alpha > 1.: alpha = 1. self.alpha = alpha if self.myops is not None: self.myops.palalpha.SetValue(0) self.myops.palalphaslider.SetValue(int(alpha*100)) self.reset_plot() return self.alpha
@property
[docs] def memory_usage(self): """ Return the memory usage of the header """ if self.nbz == 0: size = self.nbx * self.nby else: size = self.nbx * self.nby * self.nbz if self.wolftype == WOLF_ARRAY_FULL_SINGLE: return size * 4 elif self.wolftype == WOLF_ARRAY_FULL_DOUBLE: return size * 8 elif self.wolftype == WOLF_ARRAY_FULL_INTEGER: return size * 4 elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]: return size * 2 elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER8, WOLF_ARRAY_FULL_UINTEGER8]: return size else: return size * 4
@property
[docs] def memory_usage_mask(self): """ Return the memory usage of the mask """ if self.nbz == 0: size = self.nbx * self.nby else: size = self.nbx * self.nby * self.nbz return size * 1
def __del__(self): """ Destructeur de la classe """ try: # Perform cleanup tasks safely self.delete_lists() if hasattr(self, 'array'): del self.array if VERSION_RGB == 1 and hasattr(self, 'rgb'): del self.rgb if hasattr(self, '_array3d'): del self._array3d if hasattr(self, 'mypal'): del self.mypal if hasattr(self, 'shaded'): del self.shaded # Perform garbage collection if gc is available import gc gc.collect() except Exception as e: print(f"Exception in WolfArray destructor: {e} -- Please report this issue")
[docs] def extract_selection(self): """ Extract the current selection """ newarray = self.SelectionData.get_newarray() mapviewer = self.get_mapviewer() if mapviewer is not None: mapviewer.add_object('array', newobj = newarray, ToCheck = True, id = self.idx + '_extracted')
[docs] def crop_array(self, bbox:list[list[float],list[float]]) -> "WolfArray": """ Crop the data based on the bounding box """ imin, jmin = self.get_ij_from_xy(bbox[0][0], bbox[1][0]) imax, jmax = self.get_ij_from_xy(bbox[0][1], bbox[1][1]) imin = int(imin) jmin = int(jmin) imax = int(imax) jmax = int(jmax) newheader = header_wolf() newheader.nbx = imax-imin newheader.nby = jmax-jmin newheader.dx = self.dx newheader.dy = self.dy newheader.origx, newheader.origy = self.get_xy_from_ij(imin, jmin) newheader.origx -= self.dx / 2. newheader.origy -= self.dy / 2. newheader.translx = self.translx newheader.transly = self.transly newarray = WolfArray(srcheader=newheader) newarray.array[:,:] = self.array[imin:imax, jmin:jmax] return newarray
[docs] def get_centers(self, usenap:bool = True): """ Get the centers of the cells """ if usenap: ij = np.where(self.array.mask==False,) xy = self.get_xy_from_ij_array(np.vstack((ij[0], ij[1])).T).copy().flatten() else: ij = np.meshgrid(np.arange(self.nbx), np.arange(self.nby)) ij = np.asarray([ij[0].flatten(), ij[1].flatten()]).T xy = self.get_xy_from_ij_array(ij).copy().flatten() return xy.astype(np.float32)
[docs] def prepare_3D(self): """ Prepare the array for 3D display """ if self.array.ndim != 2: logging.error(_('Array is not 2D')) return self._quads = self.get_centers() ztext = np.require(self.array.data.copy(), dtype=np.float32, requirements=['C']) assert ztext.flags.c_contiguous, _('ztext is not C-contiguous') ztext[self.array.mask] = self.array.min() self._array3d = WolfArray_plot3D(self._quads, self.dx, self.dy, self.origx, self.origy, zscale = 1., ztexture = ztext, color_palette=self.mypal.get_colors_f32().flatten(), color_values=self.mypal.values.astype(np.float32))
[docs] def check_bounds_ij(self, i:int, j:int): """Check if i and j are inside the array bounds""" return i>=0 and j>=0 and i<self.nbx and j<self.nby
[docs] def check_bounds_xy(self, x:float, y:float): """Check if i and j are inside the array bounds""" i,j = self.get_ij_from_xy(x,y) return self.check_bounds_ij(i,j)
[docs] def show_properties(self): """ Affichage des propriétés de la matrice dans une fenêtre wxPython """ if self.wx_exists and self.myops is not None: self.myops.SetTitle(_('Operations on array: ') + self.idx) self.myops.Show() self.myops.Center() self.myops.Raise()
[docs] def hide_properties(self): """ Hide the properties window """ if self.wx_exists and self.myops is not None: self.myops.hide_properties()
@property
[docs] def nullvalue(self) -> float: """ Return the null value """ return self._nullvalue
@nullvalue.setter def nullvalue(self, value:float): """ Set the null value """ self._nullvalue = value @property
[docs] def nodata(self) -> float: """ alias for nullvalue """ return self._nullvalue
@nodata.setter def nodata(self, value:float): """ alias for nullvalue """ self._nullvalue = value @property
[docs] def SelectionData(self) -> SelectionData: """ Return the data of the selection """ return self.mngselection
@property
[docs] def Operations(self) -> Ops_Array: """ Return the operations on the array """ return self.myops
@property
[docs] def active_blocks(self) -> list["WolfArray"]: """ Return the active blocks """ if self.nb_blocks>0 and self._active_blocks is not None: if isinstance(self._active_blocks, list): return [self.myblocks[cur] for cur in self._active_blocks] elif self._active_blocks == 0: return [k for k in self.myblocks.values()] elif self._active_blocks in self.myblocks: return [self.myblocks[self._active_blocks]] else: return None else: return [self]
@active_blocks.setter def active_blocks(self, value:Union[str, int, list[int]]): """ Set the active blocks :param value: name of the block or index 1-based or list of index 1-based """ if isinstance(value, str): if value in self.myblocks: self._active_blocks = value logging.info(_(f'Block found - {value}')) else: self._active_blocks = None logging.info(_('Block not found')) elif isinstance(value, int): if value == 0: self._active_blocks = 0 logging.info(_('All blocks selected')) else: value = getkeyblock(value, addone=False) if value in self.myblocks: self._active_blocks = value logging.info(_(f'Block found - {value}')) else: self._active_blocks = None logging.info(_('Block not found')) elif isinstance(value, list): if 0 in value: self._active_blocks = 0 logging.info(_('All blocks selected')) else: value = [getkeyblock(cur, addone=False) for cur in value] value = [cur for cur in value if cur in self.myblocks] if len(value)>0: self._active_blocks = value logging.info(_('List of blocks selected')) else: self._active_blocks = None logging.info(_('No block found')) else: logging.error(_('Unknown type for active_blocks')) @property
[docs] def dtype(self): """ Return the numpy dtype corresponding to the WOLF type Pay ettention to the difference between : - LOGICAL : Fortran and VB6 - Bool : Python In VB6, logical is stored as int16 In Fortran, there are Logical*1, Logical*2, Logical*4, Logical*8 In Python, bool is one byte In Numpy, np.bool_ is one byte """ if self.wolftype in [WOLF_ARRAY_FULL_DOUBLE, WOLF_ARRAY_SYM_DOUBLE, WOLF_ARRAY_CSR_DOUBLE]: dtype = np.float64 elif self.wolftype in [WOLF_ARRAY_FULL_SINGLE, WOLF_ARRAY_FULL_SINGLE_3D, WOLF_ARRAY_MB_SINGLE]: dtype = np.float32 elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER, WOLF_ARRAY_MB_INTEGER, WOLF_ARRAY_MNAP_INTEGER]: dtype = np.int32 elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]: dtype = np.int16 elif self.wolftype == WOLF_ARRAY_FULL_INTEGER8: dtype = np.int8 elif self.wolftype == WOLF_ARRAY_FULL_UINTEGER8: dtype = np.uint8 elif self.wolftype == WOLF_ARRAY_FULL_LOGICAL: dtype = np.int16 return dtype
@property
[docs] def dtype_gdal(self): """ Return the GDAL dtype corresponding to the WOLF type """ if self.wolftype in [WOLF_ARRAY_FULL_DOUBLE, WOLF_ARRAY_SYM_DOUBLE, WOLF_ARRAY_CSR_DOUBLE]: dtype = gdal.GDT_Float64 elif self.wolftype in [WOLF_ARRAY_FULL_SINGLE, WOLF_ARRAY_FULL_SINGLE_3D, WOLF_ARRAY_MB_SINGLE]: dtype = gdal.GDT_Float32 elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER, WOLF_ARRAY_MB_INTEGER, WOLF_ARRAY_MNAP_INTEGER]: dtype = gdal.GDT_Int32 elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]: dtype = gdal.GDT_Int16 elif self.wolftype == WOLF_ARRAY_FULL_INTEGER8: dtype = gdal.GDT_Byte elif self.wolftype == WOLF_ARRAY_FULL_UINTEGER8: dtype = gdal.GDT_Byte elif self.wolftype == WOLF_ARRAY_FULL_LOGICAL: dtype = gdal.GDT_Int16 return dtype
@property
[docs] def dtype_str(self): """ Return the numpy dtype corresponding to the WOLF type, as a string Pay ettention to the difference between : - LOGICAL : Fortran and VB6 - Bool : Python In VB6, logical is stored as int16 In Fortran, there are Logical*1, Logical*2, Logical*4, Logical*8 In Python, bool is one byte In Numpy, np.bool_ is one byte """ if self.wolftype in [WOLF_ARRAY_FULL_DOUBLE, WOLF_ARRAY_SYM_DOUBLE, WOLF_ARRAY_CSR_DOUBLE]: dtype = _('float64 - 8 bytes poer values') elif self.wolftype in [WOLF_ARRAY_FULL_SINGLE, WOLF_ARRAY_FULL_SINGLE_3D, WOLF_ARRAY_MB_SINGLE]: dtype = _('float32 - 4 bytes per values') elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER, WOLF_ARRAY_MB_INTEGER, WOLF_ARRAY_MNAP_INTEGER]: dtype = _('int32 - 4 bytes per values') elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]: dtype = _('int16 - 2 bytes per values') elif self.wolftype == WOLF_ARRAY_FULL_INTEGER8: dtype = _('int8 - 1 byte per values') elif self.wolftype == WOLF_ARRAY_FULL_UINTEGER8: dtype = _('uint8 - 1 byte per values') elif self.wolftype == WOLF_ARRAY_FULL_LOGICAL: dtype = _('int16 - 2 bytes per values') return dtype
[docs] def loadnap_and_apply(self): """ Load a mask file (aka nap) and apply it to the array; The mask values are set to the nullvalue. The mask file must have the same name as the array file, with the extension .napbin. It is useful for 2D WOLF simulations. """ file_name, file_extension = os.path.splitext(self.filename) fnnap = file_name + '.napbin' if os.path.exists(fnnap): locnap = WolfArray(fnnap) self.array.data[np.where(locnap.array.mask)] = self.nullvalue self.mask_data(self.nullvalue) self.reset_plot()
[docs] def add_crosslinked_array(self, newlink:"WolfArray"): """Ajout d'une matrice liée croisée""" self.linkedarrays.append(newlink) newlink.linkedarrays.append(self)
[docs] def share_palette(self): """Partage de la palette de couleurs entre matrices liées""" for cur in self.linkedarrays: if id(cur.mypal) != id(self.mypal): cur.mypal = self.mypal
[docs] def filter_inundation(self, epsilon:float = None, mask:np.ndarray = None): """ Apply filter on array : - mask data below eps - mask data outisde linkedvec :param epsilon: value under which data are masked :param mask: mask to apply if eps is None If all params are None, the function will mask NaN values """ if epsilon is not None: self.array[np.where(self.array<epsilon)] = self.nullvalue elif mask is not None: self.array.data[mask] = self.nullvalue idx_nan = np.where(np.isnan(self.array)) if len(idx_nan[0])>0: self.array[idx_nan] = self.nullvalue self.array.mask[idx_nan] = True logging.warning(_('NaN values found in the array')) if len(idx_nan[0])<10: for i,j in zip(idx_nan[0],idx_nan[1]): logging.warning(f'NaN at {i+1},{j+1} -- 1-based') else: for i,j in zip(idx_nan[0][:10],idx_nan[1][:10]): logging.warning(f'NaN at {i+1},{j+1} -- 1-based') logging.warning(f'... and {len(idx_nan[0])-10} more') self.mask_data(self.nullvalue) if self.linkedvec is not None: self.mask_outsidepoly(self.linkedvec) self.reset_plot()
[docs] def filter_independent_zones(self, n_largest:int = 1, reset_plot:bool = True): """ Filtre des zones indépendantes et conservation des n plus grandes """ # labellisation labeled_array = self.array.data.copy() labeled_array[np.where(self.array.mask)] = 0 labeled_array, num_features = label(labeled_array) # convertion en masked array labeled_array = ma.asarray(labeled_array) labeled_array.mask = np.zeros(labeled_array.shape, dtype=bool) # application du masque labeled_array.mask[:,:] = self.array.mask[:,:] longueur = [] labeled_array[labeled_array.mask] = 0 longueur = list(sum_labels(np.ones(labeled_array.shape, dtype=np.int32), labeled_array, range(1, num_features+1))) longueur = [[longueur[j], j+1] for j in range(0, num_features)] # longueur = [[np.sum(labeled_array[labeled_array == j]) // j, j] for j in range(1, num_features+1)] longueur.sort(key=lambda x: x[0], reverse=True) self.array.mask[:,:] = True for j in range(0, n_largest): self.array.mask[labeled_array == longueur[j][1]] = False self.set_nullvalue_in_mask() if reset_plot: self.reset_plot()
[docs] def filter_zone(self, set_null:bool = False, reset_plot:bool = True): """ Filtre des zones et conservation de celles pour lesquelles des mailles sont sélectionnées """ if self.SelectionData.nb == 0: logging.info(_('No selection -- no filtering')) return if self.SelectionData.myselection == 'all': logging.info(_('All nodes selected -- no filtering')) return # labellisation labeled_array = self.array.data.copy() labeled_array[np.where(self.array.mask)] = 0 labeled_array, num_features = label(labeled_array) # récupération des zones utiles vals_ij = [self.get_ij_from_xy(cur[0], cur[1]) for cur in self.SelectionData.myselection] vals = list(set([labeled_array[int(cur[0]), int(cur[1])] for cur in vals_ij])) self.array.mask[:,:] = True for j in vals: self.array.mask[labeled_array == j] = False if set_null: self.set_nullvalue_in_mask() if reset_plot: self.reset_plot()
[docs] def labelling(self, reset_plot:bool = True): """ Labelling of the array using Scipy """ # labellisation labeled_array = self.array.data.copy() labeled_array[np.where(self.array.mask)] = 0 labeled_array, num_features = label(labeled_array) self.array.data[:,:] = labeled_array[:,:].astype(self.dtype) if reset_plot: self.reset_plot()
[docs] def export_geotif(self, outdir='', extent = '', EPSG:int = 31370): """ Export de la matrice au format Geotiff (Lambert 72 - EPSG:31370) Formats supportés : - Int32 - Float32 - Float64 :param outdir: directory :param extent: suffix to add to the filename before the extension '.tif' :param EPSG: EPSG code, by default 31370 (Lambert 72) """ from osgeo import gdal, osr, gdalconst srs = osr.SpatialReference() srs.ImportFromEPSG(EPSG) if outdir=='' and extent=='': filename = self.filename else: filename = join(outdir,self.idx)+extent+'.tif' arr=self.array if arr.dtype == np.float32: arr_type = gdal.GDT_Float32 nullvalue = self.nullvalue elif arr.dtype == np.float64: arr_type = gdal.GDT_Float64 nullvalue = self.nullvalue elif arr.dtype == np.int8: arr_type = gdal.GDT_Byte nullvalue = int(self.nullvalue) elif arr.dtype == np.int16: arr_type = gdal.GDT_Int16 nullvalue = int(self.nullvalue) else: arr_type = gdal.GDT_Int32 nullvalue = int(self.nullvalue) driver: gdal.Driver out_ds: gdal.Dataset band: gdal.Band driver = gdal.GetDriverByName("GTiff") # bytes_per_pixel = arr.data.dtype.itemsize estimated_file_size = self.memory_usage #arr.shape[0] * arr.shape[1] * bytes_per_pixel # Check if estimated file size exceeds 4GB if (estimated_file_size > 4 * 1024**3): # 4GB in bytes options = ['COMPRESS=LZW', 'BIGTIFF=YES'] logging.info('BigTIFF format will be used!') else: options = ['COMPRESS=LZW'] out_ds = driver.Create(filename, arr.shape[0], arr.shape[1], 1, arr_type, options=options) out_ds.SetProjection(srs.ExportToWkt()) # On utilise le coin supérieur gauche de la matrice et la taille des pixels selon y est négative # !! gdalBuiltvrt ne supporte que cette convention !! out_ds.SetGeoTransform([self.origx+self.translx, self.dx, 0., self.origy+self.transly+float(self.nby)*self.dy, 0., -self.dy]) band = out_ds.GetRasterBand(1) band.SetNoDataValue(nullvalue) band.WriteArray(np.flipud(arr.data.transpose())) band.FlushCache() band.ComputeStatistics(True)
[docs] def get_dxdy_min(self): """ Return the minimal size Mainly useful in PyVertexVectors to get the minimal size of the cells and ensure compatibility with the 2D results (GPU and Multiblocks) """ return min(self.dx, self.dy)
[docs] def get_dxdy_max(self): """ Return the maximal size Mainly useful in PyVertexVectors to get the minimal size of the cells and ensure compatibility with the 2D results (GPU and Multiblocks) """ return max(self.dx, self.dy)
[docs] def _import_npy(self, fn:str='', crop:list[float]=None): """ Import a numpy file. Must be called after the header is initialized, e.g. read_txt_header. :param fn: filename :param crop: crop the data - [xmin, xmax, ymin, ymax] """ if fn !='': pass elif self.filename !='': fn = self.filename else: return # Numpy format locarray = np.load(self.filename) assert locarray.shape[0] == self.nbx, _('Incompatible dimensions') assert locarray.shape[1] == self.nby, _('Incompatible dimensions') if crop is not None : logging.error(_('Cropping not yet implemented for numpy files')) imin, jmin = self.get_ij_from_xy(crop[0][0], crop[1][0]) imax, jmax = self.get_ij_from_xy(crop[0][1], crop[1][1]) imin = int(imin) jmin = int(jmin) imax = int(imax) jmax = int(jmax) self.nbx = imax - imin self.nby = jmax - jmin self.dx = self.dx self.dy = self.dy self.origx, self.origy = self.get_xy_from_ij(imin, jmin) self.origx -= self.dx / 2. self.origy -= self.dy / 2. self.translx = self.translx self.transly = self.transly locarray = locarray[imin:imax, jmin:jmax] self.array = np.ma.asarray(locarray)
[docs] def import_geotif(self, fn:str='', which:int = None, crop:list[float]=None): """ Import de la matrice au format Geotiff Formats supportés : - Int32 - Float32 - Float64 :param fn: filename :param which: band to import :param crop: crop the data - [xmin, xmax, ymin, ymax] """ from osgeo import gdal, osr, gdalconst if fn !='': pass elif self.filename !='': fn = self.filename else: return if crop is not None : if not os.path.exists(fn): logging.error(_('File not found')) return tmpdx = self.dx fn_crop = fn + '_crop.tif' if type(crop) is np.ndarray: pass elif type(crop) is list: pass else: if not self.wx_exists: logging.error(_('Crop must be a list or a numpy array with 4 values - xmin, xmax, ymin, ymax')) return raster:gdal.Dataset raster = gdal.Open(fn) geotr = raster.GetGeoTransform() self.dx = geotr[1] self.dy = abs(geotr[5]) newcrop = CropDialog(None) if self.wx_exists: bounds = self.mapviewer.get_canvas_bounds() newcrop.dx.Value = str(self.dx) newcrop.dy.Value = str(self.dy) newcrop.dx.Enable(False) newcrop.dy.Enable(False) newcrop.ox.Value = str(float((bounds[0] // 50.) * 50.)) newcrop.ex.Value = str(float((bounds[2] // 50.) * 50.)) newcrop.oy.Value = str(float((bounds[1] // 50.) * 50.)) newcrop.ey.Value = str(float((bounds[3] // 50.) * 50.)) badvalues = True while badvalues: badvalues = False ret = newcrop.ShowModal() if ret == wx.ID_CANCEL: newcrop.Destroy() return else: crop = [float(newcrop.ox.Value), float(newcrop.ex.Value), float(newcrop.oy.Value), float(newcrop.ey.Value)] tmpdx = float(newcrop.dx.Value) tmpdy = float(newcrop.dy.Value) if self.dx != tmpdx or self.dy != tmpdy: if tmpdx / self.dx != tmpdy / self.dy: badvalues = True newcrop.Destroy() xmin, xmax, ymin, ymax = crop if self.wx_exists: with wx.FileDialog(None, _('Save the cropped file for later'), wildcard="Tiff files (*.tif)|*.tif", style=wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) as fileDialog: if fileDialog.ShowModal() == wx.ID_CANCEL: return fn_crop = fileDialog.GetPath() gdal.Translate(fn_crop, fn, projWin=[xmin, ymax, xmax, ymin]) fn = fn_crop else: from tempfile import NamedTemporaryFile tmpfile = NamedTemporaryFile(suffix='.tif') gdal.Translate(str(tmpfile.name), fn, projWin=[xmin, ymax, xmax, ymin]) fn = str(tmpfile.name) raster:gdal.Dataset raster = gdal.Open(fn) # Projection # proj = raster.GetProjection() # Dimensions self.nbx = raster.RasterXSize self.nby = raster.RasterYSize # Number of bands nb = raster.RasterCount if which is None: names = [raster.GetRasterBand(which+1).GetDescription() for which in range(nb)] if nb>1: if self.wx_exists : dlg = wx.SingleChoiceDialog(None, _('Which band?'), _('Band choice'), names) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return which = dlg.GetSelection()+1 dlg.Destroy() else: which =1 else: which=1 else: if which > nb: which = nb if which < 1: which = 1 # Metadata for the raster dataset # meta = raster.GetMetadata() # Read the raster band as separate variable band = raster.GetRasterBand(which) # Data type of the values self.nullvalue = band.GetNoDataValue() if self.nullvalue is None: self.nullvalue = 0. geotr = raster.GetGeoTransform() self.origx = geotr[0] self.dx = geotr[1] self.dy = abs(geotr[5]) try: if geotr[5] <0.: self.origy = geotr[3]+geotr[5]*self.nby tmp_array = np.transpose(np.flipud(band.ReadAsArray())) else: self.origy = geotr[3] tmp_array = np.transpose(band.ReadAsArray()) self.array = np.ma.asarray(tmp_array.copy()) assert self.array.iscontiguous(), _('Array is not contiguous') del tmp_array if self.array.dtype == np.float64: self.wolftype = WOLF_ARRAY_FULL_DOUBLE elif self.array.dtype == np.float32: self.wolftype = WOLF_ARRAY_FULL_SINGLE elif self.array.dtype == np.int32: self.wolftype = WOLF_ARRAY_FULL_INTEGER elif self.array.dtype == np.uint8: logging.warning(_('***************************************************')) logging.warning(_(' Conversion of uint8 to int8')) logging.warning(_(' If you save this file, it will be converted to int8')) logging.warning(_('***************************************************')) self.array = self.array.astype(np.int8) self.wolftype = WOLF_ARRAY_FULL_INTEGER8 elif self.array.dtype == np.int8: self.wolftype = WOLF_ARRAY_FULL_INTEGER8 elif self.array.dtype == np.int16: self.wolftype = WOLF_ARRAY_FULL_INTEGER16 except: logging.warning(_('Error during importing tif file')) # Close the raster raster.FlushCache() raster = None
[docs] def add_ops_sel(self): """ Adding selection manager and operations array - Ops_Array (GUI) if mapviewer is not None - create SelectionData (Selection manager) if None """ if self.wx_exists and self.mapviewer is not None: self.myops = Ops_Array(self, self.mapviewer) self.myops.Hide() else: self.myops = None if self.mngselection is None: if self.nb_blocks>0: self.mngselection = SelectionDataMB(self) else: self.mngselection = SelectionData(self)
[docs] def change_gui(self, newparentgui): """ Move GUI to another instance :param newparentgui: WolfMapViewer instance """ from .PyDraw import WolfMapViewer assert isinstance(newparentgui, WolfMapViewer), _('newparentgui must be a WolfMapViewer instance') self.wx_exists = wx.App.Get() is not None if self.mapviewer is None: self.mapviewer = newparentgui self.add_ops_sel() else: self.mapviewer = newparentgui if self.myops is not None: self.myops.mapviewer = newparentgui else: self.add_ops_sel()
[docs] def compare_cloud(self, mycloud:cloud_vertices, delta:list[float] = [.15, .5, 1.]): """ Graphique de comparaison des valeurs d'un nuage de points et des valeurs de la matrice sous les mêmes positions :param mycloud: cloud_vertices :param delta: list of tolerance for the comparison """ # Get the values of the cloud xyz_cloud = mycloud.get_xyz() # Get values of the array at the same positions zarray = np.array([self.get_value(curxy[0],curxy[1]) for curxy in xyz_cloud]) # count the number of points outside the array nbout = np.count_nonzero(zarray==-99999) # Get the values of the cloud that are not outside the array # Separate XY and Z values (cloud and array) # - z values z_cloud = xyz_cloud[zarray!=-99999][:,2] # - xy values xy_cloud = xyz_cloud[zarray!=-99999][:,:2] # - array values zarray = zarray[zarray!=-99999] # concatenate all z values zall = np.concatenate([z_cloud,zarray]) # find the min and max values zmin = np.min(zall) zmax = np.max(zall) # compute differences diffz = zarray-z_cloud # choose a colormap cmap = plt.cm.get_cmap('RdYlBu') mindiff = np.min(diffz) maxdiff = np.max(diffz) # Plot the differences [0] and the position [1] fig,ax = plt.subplots(2,1) ax[0].set_title(_('Comparison Z - ') + str(nbout) + _(' outside points on ') + str(len(xyz_cloud))) sc0 = ax[0].scatter(z_cloud,zarray,s=10,c=diffz,cmap = cmap, vmin=mindiff, vmax=maxdiff) ax[0].set_xlabel(_('Scatter values')) ax[0].set_ylabel(_('Array values')) ax[0].set_xlim([zmin,zmax]) ax[0].set_ylim([zmin,zmax]) ax[0].plot([zmin,zmax],[zmin,zmax], color='black') if delta is not None: if isinstance(delta, list): for idx, curdelta in enumerate(delta): curdelta = abs(float(curdelta)) ax[0].plot([zmin,zmax],[zmin+delta,zmax+delta], 'k--', alpha=1.-1./(idx+1)) ax[0].plot([zmin,zmax],[zmin-delta,zmax-delta], 'k--', alpha=1.-1./(idx+1)) ax[0].axis('equal') sc1 = ax[1].scatter(xy_cloud[:,0],xy_cloud[:,1],s=10,c=diffz,cmap = cmap, vmin=mindiff, vmax=maxdiff) fig.colorbar(sc1) ax[1].axis('equal') plt.show()
[docs] def compare_tri(self,mytri:Triangulation): """ Graphique de comparaison des valeurs d'un nuage de points et des valeurs de la matrice sous les mêmes positions """ xyz_cloud = mytri.pts zarray = np.array([self.get_value(curxy[0],curxy[1]) for curxy in xyz_cloud]) nbout = np.count_nonzero(zarray==-99999) z_cloud = xyz_cloud[zarray!=-99999][:,2] xy_cloud = xyz_cloud[zarray!=-99999][:,:2] zarray = zarray[zarray!=-99999] zall = np.concatenate([z_cloud,zarray]) zmin = np.min(zall) zmax = np.max(zall) diffz = zarray-z_cloud cmap = plt.cm.get_cmap('RdYlBu') mindiff = np.min(diffz) maxdiff = np.max(diffz) fig,ax = plt.subplots(2,1) ax[0].set_title(_('Comparison Z - ') + str(nbout) + _(' outside points on ') + str(len(xyz_cloud))) sc0 = ax[0].scatter(z_cloud,zarray,s=10,c=diffz,cmap = cmap, vmin=mindiff, vmax=maxdiff) ax[0].set_xlabel(_('Scatter values')) ax[0].set_ylabel(_('Array values')) ax[0].set_xlim([zmin,zmax]) ax[0].set_ylim([zmin,zmax]) ax[0].plot([zmin,zmax],[zmin,zmax]) ax[0].axis('equal') sc1 = ax[1].scatter(xy_cloud[:,0],xy_cloud[:,1],s=10,c=diffz,cmap = cmap, vmin=mindiff, vmax=maxdiff) fig.colorbar(sc1) ax[1].axis('equal') plt.show()
[docs] def interpolate_on_polygon(self, working_vector: vector, method:Literal["nearest", "linear", "cubic"]="linear"): """ Interpolation sous un polygone L'interpolation a lieu : - uniquement dans les mailles sélectionnées si elles existent - dans les mailles contenues dans le polygone sinon On utilise ensuite "griddata" de Scipy pour interpoler les altitudes des mailles depuis les vertices 3D du polygone """ if self.mngselection is None: destxy = self.get_xy_inside_polygon(working_vector) else: if self.SelectionData.nb == 0: destxy = self.get_xy_inside_polygon(working_vector) else: destxy = self.SelectionData.myselection if len(destxy)==0: logging.debug(_('No points to interpolate')) return destij = np.asarray([list(self.get_ij_from_xy(x, y)) for x, y in destxy]) xyz = working_vector.asnparray3d() newvalues = griddata(xyz[:, :2], xyz[:, 2], destxy, method=method, fill_value=-99999.) locmask = np.where(newvalues != -99999.) self.array.data[destij[locmask][:, 0], destij[locmask][:, 1]] = newvalues[locmask]
[docs] def interpolate_on_polygons(self, working_zone:zone, method:Literal["nearest", "linear", "cubic"]="linear"): """ Interpolation sous plusieurs polygones d'une même zone """ for curvec in working_zone.myvectors: self.interpolate_on_polygon(curvec, method)
[docs] def interpolate_on_polyline(self, working_vector:vector, usemask=True): """ Interpolation sous une polyligne L'interpolation a lieu : - uniquement dans les mailles sélectionnées si elles existent - dans les mailles sous la polyligne sinon On utilise ensuite "interpolate" de shapely pour interpoler les altitudes des mailles depuis les vertices 3D de la polyligne """ vecls = working_vector.asshapely_ls() if self.SelectionData is None: allij = self.get_ij_under_polyline(working_vector, usemask) allxy = [self.get_xy_from_ij(cur[0], cur[1]) for cur in allij] else: if self.SelectionData.nb == 0: allij = self.get_ij_under_polyline(working_vector, usemask) allxy = [self.get_xy_from_ij(cur[0], cur[1]) for cur in allij] else: allxy = self.SelectionData.myselection allij = np.asarray([self.get_ij_from_xy(x,y) for x,y in allxy]) newz = np.asarray([vecls.interpolate(vecls.project(Point(x, y))).z for x, y in allxy]) self.array.data[allij[:, 0], allij[:, 1]] = newz
[docs] def interpolate_on_polylines(self, working_zone:zone, usemask=True): """ Interpolation sous toutes les polylignes d'une même zone """ for curvec in working_zone.myvectors: self.interpolate_on_polyline(curvec, usemask)
[docs] def interpolate_on_cloud(self, xy:np.ndarray, z:np.ndarray, method:Literal['linear', 'nearest', 'cubic']= 'linear'): """ Interpolation sur un nuage de points. L'interpolation a lieu : - uniquement dans les mailles sélectionnées si elles existent - dans les mailles contenues dans le polygone convexe contenant les points sinon Using griddata from Scipy. :param xy: numpy.array of vertices - shape (n,2) :param z: numpy.array of values - shape (n,) :param method: method for the interpolation -- 'nearest', 'linear' or 'cubic' See : https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html """ if self.mngselection.myselection == [] or self.mngselection.myselection == 'all': decalx = self.origx + self.translx decaly = self.origy + self.transly x = np.arange(self.dx / 2. + decalx, float(self.nbx) * self.dx + self.dx / 2 + decalx, self.dx) y = np.arange(self.dy / 2. + decaly, float(self.nby) * self.dy + self.dy / 2 + decaly, self.dy) grid_x, grid_y = np.meshgrid(x, y, sparse=True, indexing='xy') newvalues = griddata(xy, z, (grid_x, grid_y), method=method, fill_value=-99999.).transpose() self.array.data[np.where(newvalues != -99999.)] = newvalues[np.where(newvalues != -99999.)] else: ij = np.asarray([self.get_ij_from_xy(x, y) for x, y in self.mngselection.myselection]) newvalues = griddata(xy, z, self.mngselection.myselection, method=method, fill_value=-99999.) ij = ij[np.where(newvalues != -99999.)] newvalues = newvalues[np.where(newvalues != -99999.)] self.array.data[ij[:, 0], ij[:, 1]] = newvalues self.reset_plot()
[docs] def interpolate_on_triangulation(self, coords, triangles, grid_x=None, grid_y = None, mask_tri=None, interp_method:Literal['matplotlib','scipy'] = 'matplotlib'): """ Interpolation sur une triangulation. L'interpolation a lieu : - uniquement dans les mailles sélectionnées si elles existent - dans les mailles contenues dans la triangulation sinon Matplotlib is used by default, but Scipy(griddata) can be used as well. If Matplotlib crashes, try with Scipy. Matplotlib is more strict on the quality of the triangulation. :param coords: numpy.array of vertices - shape (n,3) :param triangles: numpy.array of triangles - shape (m,3) :param grid_x: numpy.array of x values where the interpolation will be done -- if None, the grid is created from the array :param grid_y: numpy.array of y values where the interpolation will be done -- if None, the grid is created from the array :param mask_tri: numpy.array of mask for the triangles :param interp_method: method for the interpolation -- 'matplotlib' or 'scipy' For matplotlib algo, see : https://matplotlib.org/stable/gallery/images_contours_and_fields/triinterp_demo.html For scipy algo, see : https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html """ if interp_method =='matplotlib': import matplotlib.tri as mtri use_scipy=False try: if self.mngselection is not None: if self.mngselection.myselection != [] and self.mngselection.myselection != 'all': ij = np.asarray([self.get_ij_from_xy(x, y) for x, y in self.mngselection.myselection]) try: # Opérateur d'interpolation linéaire triang = mtri.Triangulation(coords[:,0],coords[:,1],triangles) if mask_tri is not None: triang.set_mask(mask_tri) interplin = mtri.LinearTriInterpolator(triang, coords[:,2]) # Interpolation et récupération dans le numpy.array de l'objet Wolf except: raise Warning(_('Bad triangulation - try with another method like Scipy')) newvalues = np.ma.masked_array([interplin(x, y) for x, y in self.mngselection.myselection]) ij = ij[np.where(~newvalues.mask)] self.array.data[ij[:, 0], ij[:, 1]] = newvalues.data[np.where(~newvalues.mask)] elif self.mngselection.myselection == 'all' and (grid_x is None and grid_y is None): decalx = self.origx + self.translx decaly = self.origy + self.transly x = np.arange(self.dx / 2. + decalx, float(self.nbx) * self.dx + self.dx / 2 + decalx, self.dx) y = np.arange(self.dy / 2. + decaly, float(self.nby) * self.dy + self.dy / 2 + decaly, self.dy) grid_x, grid_y = np.meshgrid(x, y, indexing='ij') try: # Opérateur d'interpolation linéaire triang = mtri.Triangulation(coords[:,0],coords[:,1],triangles) if mask_tri is not None: triang.set_mask(mask_tri) interplin = mtri.LinearTriInterpolator(triang, coords[:,2]) except: raise Warning(_('Bad triangulation - try with another method like Scipy')) # Interpolation et récupération dans le numpy.array de l'objet Wolf newvalues = interplin(grid_x,grid_y).astype(np.float32) self.array.data[~newvalues.mask] = newvalues[~newvalues.mask] elif (grid_x is not None and grid_y is not None): ij = np.asarray([self.get_ij_from_xy(x, y) for x, y in zip(grid_x.flatten(),grid_y.flatten())]) # Opérateur d'interpolation linéaire try: triang = mtri.Triangulation(coords[:,0],coords[:,1],triangles) if mask_tri is not None: triang.set_mask(mask_tri) interplin = mtri.LinearTriInterpolator(triang, coords[:,2]) # Interpolation et récupération dans le numpy.array de l'objet Wolf newvalues = np.ma.masked_array([interplin(x, y) for x, y in zip(grid_x.flatten(),grid_y.flatten())]) except: raise Warning(_('Bad triangulation - try with another method like Scipy')) if newvalues.mask.shape!=(): ij = ij[np.where(~newvalues.mask)] self.array.data[ij[:, 0], ij[:, 1]] = newvalues.data[np.where(~newvalues.mask)] else: self.array.data[ij[:, 0], ij[:, 1]] = newvalues.data else: decalx = self.origx + self.translx decaly = self.origy + self.transly x = np.arange(self.dx / 2. + decalx, float(self.nbx) * self.dx + self.dx / 2 + decalx, self.dx) y = np.arange(self.dy / 2. + decaly, float(self.nby) * self.dy + self.dy / 2 + decaly, self.dy) grid_x, grid_y = np.meshgrid(x, y, indexing='ij') try: # Opérateur d'interpolation linéaire triang = mtri.Triangulation(coords[:,0],coords[:,1],triangles) if mask_tri is not None: triang.set_mask(mask_tri) interplin = mtri.LinearTriInterpolator(triang, coords[:,2]) # Interpolation et récupération dans le numpy.array de l'objet Wolf newvalues = interplin(grid_x,grid_y).astype(np.float32) self.array.data[~newvalues.mask] = newvalues[~newvalues.mask] except: raise Warning(_('Bad triangulation - try with another method like Scipy')) else: if grid_x is None and grid_y is None: decalx = self.origx + self.translx decaly = self.origy + self.transly x = np.arange(self.dx / 2. + decalx, float(self.nbx) * self.dx + self.dx / 2 + decalx, self.dx) y = np.arange(self.dy / 2. + decaly, float(self.nby) * self.dy + self.dy / 2 + decaly, self.dy) grid_x, grid_y = np.meshgrid(x, y, indexing='ij') # Opérateur d'interpolation linéaire triang = mtri.Triangulation(coords[:,0],coords[:,1],triangles) interplin = mtri.LinearTriInterpolator(triang, coords[:,2]) # Interpolation et récupération dans le numpy.array de l'objet Wolf newvalues = np.ma.masked_array([interplin(x, y) for x, y in zip(grid_x.flatten(),grid_y.flatten())]) # newvalues = interplin(grid_x,grid_y).astype(np.float32) self.array.data[~newvalues.mask] = newvalues[~newvalues.mask] else: ij = np.asarray([self.get_ij_from_xy(x, y) for x, y in zip(grid_x.flatten(),grid_y.flatten())]) # Opérateur d'interpolation linéaire triang = mtri.Triangulation(coords[:,0],coords[:,1],triangles) interplin = mtri.LinearTriInterpolator(triang, coords[:,2]) # Interpolation et récupération dans le numpy.array de l'objet Wolf newvalues = np.ma.masked_array([interplin(x, y) for x, y in zip(grid_x.flatten(),grid_y.flatten())]) if newvalues.mask.shape!=(): ij = ij[np.where(~newvalues.mask)] self.array.data[ij[:, 0], ij[:, 1]] = newvalues.data[np.where(~newvalues.mask)] else: self.array.data[ij[:, 0], ij[:, 1]] = newvalues.data #on force les valeurs masquées à nullvalue afin que l'interpolation n'applique pas ses effets dans cette zone self.array.data[self.array.mask]= self.nullvalue except: use_scipy=True if interp_method != 'matplotlib' or use_scipy: for curtri in triangles: curvec = vector(is2D=False) for curpt in curtri: curvec.add_vertex(wolfvertex(coords[curpt,0],coords[curpt,1], coords[curpt,2])) curvec.close_force() self.interpolate_on_polygon(curvec, "linear") self.reset_plot() return
[docs] def import_from_gltf(self, fn:str='', fnpos:str='', interp_method:Literal['matplotlib','scipy'] = 'matplotlib'): """ Import from GLTF/GLB format :param fn: filename :param fnpos: filename for the position's information :param interp_method: method for the interpolation -- 'matplotlib' or 'scipy' """ #FIXME : add the possibility to use PyVista if fn == '' or fnpos == '': logging.info(_('Retry !! -- Bad files')) return if self.mapviewer is not None: if self.mapviewer.link_params is None: self.mapviewer.link_params = {} self.mapviewer.link_params['gltf file'] = fn self.mapviewer.link_params['gltf pos'] = fnpos mytri = Triangulation() mytri.import_from_gltf(fn) with open(fnpos, 'r') as f: mylines = f.read().splitlines() ox = float(mylines[0]) oy = float(mylines[1]) nbx = int(mylines[2]) nby = int(mylines[3]) i1 = int(mylines[4]) j1 = int(mylines[5]) i2 = int(mylines[6]) j2 = int(mylines[7]) xmin = float(mylines[8]) xmax = float(mylines[9]) ymin = float(mylines[10]) ymax = float(mylines[11]) try: znull = float(mylines[12]) except: znull=-99999. x = np.arange(self.dx / 2. + ox, float(nbx) * self.dx + self.dx / 2 + ox, self.dx) y = np.arange(self.dy / 2. + oy, float(nby) * self.dy + self.dy / 2 + oy, self.dy) if interp_method =='matplotlib': grid_x, grid_y = np.meshgrid(x, y, indexing='ij') self.interpolate_on_triangulation(np.asarray(mytri.pts),mytri.tri, grid_x, grid_y, mytri.get_mask()) else: grid_x, grid_y = np.meshgrid(x, y, sparse=True, indexing='xy') newvalues = griddata(np.asarray(mytri.pts)[:,0:2], np.asarray(mytri.pts)[:,2], (grid_x, grid_y), method='linear') locmask = np.logical_and(np.logical_not(self.array.mask[i1:i2, j1:j2]), np.logical_not(np.isnan(newvalues.transpose()))) self.array.data[i1:i2, j1:j2][locmask] = newvalues.transpose()[locmask] self.reset_plot()
[docs] def export_to_gltf(self, bounds:list[float]=None, fn:str=''): """ Export to GLTF/GLB format :param bounds: [[xmin,xmax],[ymin,ymax]] :param fn: filename """ mytri, znull = self.get_triangulation(bounds) mytri.export_to_gltf(fn) mytri.saveas(fn+'.tri') if bounds is None: ox = self.origx + self.translx oy = self.origy + self.transly nbx = self.nbx nby = self.nby i1 = 0 i2 = self.nbx j1 = 0 j2 = self.nby bounds = [[ox,ox+float(nbx)*self.dx],[oy,oy+float(nby)*self.dy]] else: ox = max(self.origx, bounds[0][0]) oy = max(self.origy, bounds[1][0]) i1, j1 = self.get_ij_from_xy(ox, oy) i2, j2 = self.get_ij_from_xy(bounds[0][1], bounds[1][1]) i1 = max(i1, 0) j1 = max(j1, 0) i2 = min(i2 + 1, self.nbx) j2 = min(j2 + 1, self.nby) nbx = i2 - i1 nby = j2 - j1 with open(fn + '.pos', 'w') as f: f.write(str(ox) + '\n') f.write(str(oy) + '\n') f.write(str(nbx) + '\n') f.write(str(nby) + '\n') f.write(str(i1) + '\n') f.write(str(j1) + '\n') f.write(str(i2) + '\n') f.write(str(j2) + '\n') f.write(str(bounds[0][0]) + '\n') f.write(str(bounds[0][1]) + '\n') f.write(str(bounds[1][0]) + '\n') f.write(str(bounds[1][1]) + '\n') f.write(str(znull))
[docs] def get_triangulation(self, bounds:list[float]=None): """ Traingulation of the array :param bounds: [[xmin,xmax],[ymin,ymax]] """ all = bounds is None if bounds is None: ox = self.origx + self.translx oy = self.origy + self.transly nbx = self.nbx nby = self.nby i1 = 0 i2 = self.nbx j1 = 0 j2 = self.nby bounds = [[ox,ox+float(nbx)*self.dx],[oy,oy+float(nby)*self.dy]] else: ox = max(self.origx, bounds[0][0]) oy = max(self.origy, bounds[1][0]) i1, j1 = self.get_ij_from_xy(ox, oy) i2, j2 = self.get_ij_from_xy(bounds[0][1], bounds[1][1]) i1 = max(i1, 0) j1 = max(j1, 0) i2 = min(i2 + 1, self.nbx) j2 = min(j2 + 1, self.nby) nbx = i2 - i1 nby = j2 - j1 refx = ox refy = oy x = np.arange(self.dx / 2. + refx, float(nbx) * self.dx + self.dx / 2 + refx, self.dx) y = np.arange(self.dy / 2. + refy, float(nby) * self.dy + self.dy / 2 + refy, self.dy) znull = np.min(self.array[i1:i2, j1:j2])-1. if all: locarr = np.copy(self.array.data) locarr[self.array.mask] = znull points = np.meshgrid(x,y) points = np.concatenate((points[0].flatten(), points[1].flatten(),locarr.flatten())).reshape([3,len(x)*len(y)]).transpose() else: points = np.asarray( [[xx, yy, self.get_value(xx + ox - refx, yy + oy - refy, nullvalue=znull)] for xx in x for yy in y], dtype=np.float32) decal = 0 triangles = [] triangles.append([[i + decal, i + decal + 1, i + decal + nby] for i in range(nby - 1)]) triangles.append([[i + decal + nby, i + decal + 1, i + decal + nby + 1] for i in range(nby - 1)]) for k in tqdm(range(1, nbx - 1)): decal = k * nby triangles.append([[i + decal, i + decal + 1, i + decal + nby] for i in range(nby - 1)]) triangles.append([[i + decal + nby, i + decal + 1, i + decal + nby + 1] for i in range(nby - 1)]) triangles = np.asarray(triangles, dtype=np.uint32).reshape([(2 * nby - 2) * (nbx - 1), 3]) mytri = Triangulation(pts = points, tri = triangles) return mytri, znull
[docs] def hillshade(self, azimuth:float, angle_altitude:float): """ Create a hillshade array -- see "hillshade" function accelerated by JIT""" if self.shaded is None: logging.error(_('No shaded array')) return self.shaded.set_header(self.get_header()) self.shaded.array = hillshade(self.array.data, azimuth, angle_altitude) self.shaded.delete_lists()
[docs] def get_gradient_norm(self): """ Compute and return the norm of the gradient """ mygradient = WolfArray(mold=self) x, y = np.gradient(self.array, self.dx, self.dy) mygradient.array = ma.asarray(np.pi / 2. - np.arctan(np.sqrt(x * x + y * y))) mygradient.array.mask = self.array.mask return mygradient
[docs] def get_laplace(self): """ Compute and return the laplacian """ mylap = WolfArray(mold=self) mylap.array = ma.asarray(laplace(self.array) / self.dx ** 2.) mylap.array.mask = self.array.mask return mylap
[docs] def volume_estimation(self, axs:plt.Axes= None): """ Estimation of the volume of the selected zone """ vect = self.array[np.logical_not(self.array.mask)].flatten() zmin = np.amin(vect) zmax = np.amax(vect) dlg = wx.TextEntryDialog(None, _("Desired Z max ?\n Current Z min :") + str(zmin), _("Z max?"), str(zmax)) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return zmax = float(dlg.GetValue()) dlg.Destroy() dlg = wx.NumberEntryDialog(None, _("How many values?"), _("How many?"), _("How many ?"), 10, 0, 200) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return nb = dlg.GetValue() dlg.Destroy() deltaz = (zmax - zmin) / nb curz = zmin nbgroupement = [] labeled_areas = [] stockage = [] z = [] methods = [_("All cells below the elevation (even if cells are disconnected)"), _("Only the largest connected area below the elevation (not necessarily the same for each elevation)"), _("Only the area below the elevation (if containing the cells stored in memory selection)")] keys_select = list(self.SelectionData.selections.keys()) if len(keys_select) == 0: methods = methods[:2] use_memory = False dlg = wx.SingleChoiceDialog(None, _("Choose a method for selecting the area to integrate"), _("Labeling?"), methods) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return if dlg.GetSelection() == 0: labeled = False else: labeled = True if dlg.GetSelection() == 1: use_memory = False else: if len(keys_select) >1: dlg = wx.SingleChoiceDialog(None, _("Choose a memory selection"), _("Memory selection?"), keys_select) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return key = keys_select[dlg.GetSelection()] else: key = keys_select[0] xy_key = self.SelectionData.selections[key]['select'] if len(xy_key) == 0: logging.error(_('Empty selection')) return ij_key = self.xy2ij_np(xy_key) use_memory = True extensionmax = WolfArray(mold=self) extensionmax.array[:, :] = 0. if labeled: for i in tqdm(range(nb + 1)): z.append(curz) # Compute difference between the array and the current elevation if i == 0: diff = self.array - (curz + 1.e-3) else: diff = self.array - curz # Keep only the negative values diff[diff > 0] = 0. diff.data[diff.mask] = 0. if np.count_nonzero(diff < 0.) > 1: # More than one cell below the elevation # Labeling of the cells below the elevation labeled_array, num_features = label(diff.data) # Applying the same mask as the original array labeled_array = ma.asarray(labeled_array) labeled_array.mask = self.array.mask if use_memory: # Use only the labeled areas containing the cells stored in memory selection labeled_areas = [] for curij in ij_key: labeled_areas.append(labeled_array[curij[0], curij[1]]) # Remove masked value labeled_areas = [x for x in labeled_areas if x is not ma.masked] # Remove duplicates labeled_areas = list(set(labeled_areas)) for curarea in labeled_areas: if curarea ==0: volume = 0. surface = 0. continue # Search mask = labeled_array == curarea area = np.where(mask) volume = -self.dx * self.dy * np.sum(diff[area]) surface = self.dx * self.dy * len(area[0]) extensionmax.array[np.logical_and(mask, extensionmax.array[:, :] == 0.)] = float(i + 1) else: labeled_areas = list(sum_labels(np.ones(labeled_array.shape, dtype=np.int32), labeled_array, range(1, num_features+1))) labeled_areas = [[x, y] for x, y in zip(labeled_areas, range(1, num_features+1))] labeled_areas.sort(key=lambda x: x[0], reverse=True) jmax = labeled_areas[0][1] nbmax = labeled_areas[0][0] volume = -self.dx * self.dy * np.sum(diff[labeled_array == jmax]) surface = self.dx * self.dy * nbmax extensionmax.array[np.logical_and(labeled_array == jmax, extensionmax.array[:, :] == 0.)] = float(i + 1) else: # Only one cell below the elevation volume = -self.dx * self.dy * np.sum(diff) surface = self.dx * self.dy * np.count_nonzero(diff<0.) extensionmax.array[np.logical_and(diff[:,:]<0., extensionmax.array[:, :] == 0.)] = float(i + 1) stockage.append([volume, surface]) curz += deltaz else: for i in tqdm(range(nb + 1)): z.append(curz) if i == 0: diff = self.array - (curz + 1.e-3) else: diff = self.array - curz diff[diff > 0] = 0. diff.data[diff.mask] = 0. volume = -self.dx * self.dy * np.sum(diff) surface = self.dx * self.dy * np.count_nonzero(diff<0.) stockage.append([volume, surface]) curz += deltaz extensionmax.array[np.logical_and(diff[:,:]<0., extensionmax.array[:, :] == 0.)] = float(i + 1) dlg = wx.FileDialog(None, _('Choose filename for zoning result'), wildcard='bin (*.bin)|*.bin|tif (*.tif)|*.tif|All (*.*)|*.*', style=wx.FD_SAVE) ret = dlg.ShowModal() if ret == wx.ID_CANCEL: dlg.Destroy() return fn = dlg.GetPath() dlg.Destroy() extensionmax.filename = fn extensionmax.write_all() if axs is None: fig, axs = plt.subplots(1, 2, tight_layout=True) else: fig = axs[0].get_figure() axs[0].plot(z, [x[0] for x in stockage]) axs[0].scatter(z, [x[0] for x in stockage]) axs[0].set_xlabel(_("Elevation [m]"), size=15) axs[0].set_ylabel(_("Volume [$m^3$]"), size=15) axs[1].step(z, [x[1] for x in stockage], where='post') axs[1].scatter(z, [x[1] for x in stockage]) axs[1].set_xlabel(_("Elevation [m]"), size=15) axs[1].set_ylabel(_("Surface [$m^2$]"), size=15) fig.suptitle(_("Retention capacity of the selected zone"), fontsize=20) with open(fn[:-4] + '_hvs.txt', 'w') as f: f.write('H [m]\tZ [m DNG]\tVolume [$m^3$]\tSurface [$m^2$]\n') for curz, (curv, curs) in zip(z, stockage): f.write('{}\t{}\t{}\t{}\n'.format(curz - zmin, curz, curv, curs)) return fig, axs
[docs] def paste_all(self, fromarray:"WolfArray", mask_after:bool=True): """ Paste all the values from another WolfArray """ fromarray: WolfArray # Récupération des bornes de la matrice source dans la matrice de destination i1, j1 = self.get_ij_from_xy(fromarray.origx, fromarray.origy) i2, j2 = self.get_ij_from_xy(fromarray.origx + fromarray.nbx * fromarray.dx, fromarray.origy + fromarray.nby * fromarray.dy) # Limitation des bornes à la matrice de destination i1 = max(0, i1) j1 = max(0, j1) i2 = min(self.nbx, i2) j2 = min(self.nby, j2) # Conversion des bornes utiles en coordonnées x1, y1 = self.get_xy_from_ij(i1, j1) x2, y2 = self.get_xy_from_ij(i2, j2) # Récupération des bornes utiles dans la matrice source i3, j3 = fromarray.get_ij_from_xy(x1, y1) i4, j4 = fromarray.get_ij_from_xy(x2, y2) # Sélection des valeurs non masquées # Attention : le résultat est en indices relatifs à [i3,j3] --> demande une conversion en indices absolus pour retrouver les valeurs dans la matrice complète usefulij = np.where(np.logical_not(fromarray.array.mask[i3:i4, j3:j4])) i5, j5 = self.get_ij_from_xy(x1, y1) # Décalage des indices pour la matrice de destination usefulij_dest = (usefulij[0] + i5, usefulij[1] + j5) usefulij[0][:] += i3 usefulij[1][:] += j3 self.array.data[usefulij_dest] = fromarray.array.data[usefulij] if mask_after: self.mask_data(self.nullvalue) self.reset_plot()
[docs] def set_values_sel(self, xy:list[float], z:list[float], update:bool=True): """ Set values at the selected positions :param xy: [[x1,y1],[x2,y2],...] :param z: [z1,z2,...] :param update: update the plot """ sel = np.asarray(xy) z = np.asarray(z) if len(sel) == 1: ijall = np.asarray(self.get_ij_from_xy(sel[0, 0], sel[0, 1])).transpose() i = ijall[0] j = ijall[1] if i > 0 and i < self.nbx and j > 0 and j < self.nby: self.array[i, j] = z else: ijall = np.asarray(self.get_ij_from_xy(sel[:, 0], sel[:, 1])).transpose() useful = np.where((ijall[:, 0] >= 0) & (ijall[:, 0] < self.nbx) & (ijall[:, 1] >= 0) & (ijall[:, 1] < self.nby)) self.array[ijall[useful, 0], ijall[useful, 1]] = z[useful] self.mask_data(self.nullvalue) if update: self.reset_plot()
[docs] def init_from_new(self, dlg: NewArray): """ Initialize the array properties from the NewArray dialog """ self.dx = float(dlg.dx.Value) self.dy = float(dlg.dy.Value) self.nbx = int(dlg.nbx.Value) self.nby = int(dlg.nby.Value) self.origx = float(dlg.ox.Value) self.origy = float(dlg.oy.Value) self.array = ma.MaskedArray(np.ones((self.nbx, self.nby), order='F', dtype=np.float32)) self.mask_reset()
[docs] def init_from_header(self, myhead: header_wolf, dtype:np.dtype = None, force_type_from_header:bool=False): """ Initialize the array properties from a header_wolf object :param myhead: header_wolf object :param dtype: numpy dtype :param force_type_from_header: force the type from the header passed as argument """ if force_type_from_header: self.wolftype = myhead.wolftype if dtype is None: if self.wolftype == WOLF_ARRAY_FULL_DOUBLE: dtype = np.float64 elif self.wolftype == WOLF_ARRAY_FULL_SINGLE: dtype = np.float32 elif self.wolftype == WOLF_ARRAY_FULL_INTEGER: dtype = np.int32 elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]: dtype = np.int16 elif self.wolftype == WOLF_ARRAY_FULL_INTEGER8: dtype = np.int8 elif self.wolftype == WOLF_ARRAY_FULL_UINTEGER8: dtype = np.uint8 self.dx = myhead.dx self.dy = myhead.dy self.nbx = myhead.nbx self.nby = myhead.nby self.origx = myhead.origx self.origy = myhead.origy self.translx = myhead.translx self.transly = myhead.transly self.array = ma.MaskedArray(np.ones((self.nbx, self.nby), order='F', dtype=dtype)) self.mask_reset()
[docs] def interpolation2D(self, key:str='1'): """ Interpolation 2D basde on selected points in key 1 """ #FIXME : auhtorize interpolation on other keys key = str(key) if key in self.mngselection.selections.keys(): if len(self.mngselection.myselection)>0: curlist = self.mngselection.selections[key]['select'] cursel = self.mngselection.myselection if len(curlist) > 0: ij = [self.get_ij_from_xy(cur[0], cur[1]) for cur in curlist] z = [self.array.data[curij[0], curij[1]] for curij in ij] if cursel == 'all': xall = np.linspace(self.origx + self.dx / 2., self.origx + (float(self.nbx) - .5) * self.dx, self.nbx) yall = np.linspace(self.origy + self.dy / 2., self.origy + (float(self.nby) - .5) * self.dy, self.nby) cursel = [(x, y) for x in xall for y in yall] z = griddata(curlist, z, cursel, fill_value=np.NaN) for cur, curz in zip(cursel, z): if not np.isnan(curz): i, j = self.get_ij_from_xy(cur[0], cur[1]) self.array.data[i, j] = curz self.reset_plot()
[docs] def copy_mask(self, source:"WolfArray", forcenullvalue:bool= False, link:bool=True): """ Copy/Link the mask from another WolfArray :param source: WolfArray source :param forcenullvalue: force nullvalue in the masked zone :param link: link the mask if True (default), copy it otherwise """ assert self.shape == source.shape, _('Bad shape') if forcenullvalue: self.array[np.where(source.array.mask)] = self.nullvalue if link: self.array.mask = source.array.mask else: self.array.mask = source.array.mask.copy() self.nbnotnull = source.nbnotnull self.reset_plot()
[docs] def mask_union(self, source:"WolfArray", link:bool=True): """ Union of the mask with another WolfArray :param source: WolfArray source :param link: link the mask if True (default), copy it otherwise """ union = self.array.mask & source.array.mask self.array[(~union) & (self.array.mask)] = self.nullvalue source.array[(~union) & (source.array.mask)] = self.nullvalue if link: self.array.mask = union source.array.mask = union else: self.array.mask = union.copy() source.array.mask = union.copy() self.reset_plot() source.reset_plot()
[docs] def mask_unions(self, sources:list["WolfArray"], link:bool=True): """ Union of the mask with another WolfArrays :param source: list of WolfArray sourceq :param link: link the mask if True (default), copy it otherwise """ for cursrc in sources: union = self.array.mask & cursrc.array.mask self.array[(~union) & (self.array.mask)] = self.nullvalue for cursrc in sources: cursrc.array[(~union) & (cursrc.array.mask)] = self.nullvalue if link: self.array.mask = union for cursrc in sources: cursrc.array.mask = union else: self.array.mask = union.copy() for cursrc in sources: cursrc.array.mask = union.copy() self.reset_plot() for cursrc in sources: cursrc.reset_plot()
[docs] def copy_mask_log(self, mask:np.ndarray, link:bool=True): """ Copy the mask from a numpy array :param mask: numpy array :param link: link the mask if True (default), copy it otherwise """ assert self.shape == mask.shape, _('Bad shape') if self.array is None: logging.debug(_('No array !!')) return if link: self.array.mask = mask else: self.array.mask = mask.copy() self.reset_plot()
[docs] def check_plot(self): """ Make sure the array is plotted """ self.plotted = True if not self.loaded and self.filename != '': # if not loaded, load it self.read_all() # self.read_data() if self.masknull: self.mask_data(self.nullvalue) self.loaded = True if VERSION_RGB==1 : if self.rgb is None: self.updatepalette(0)
[docs] def uncheck_plot(self, unload:bool=True, forceresetOGL:bool=False, askquestion:bool=True): """ Make sure the array is not plotted :param unload: unload the data if True (default), keep it otherwise :param forceresetOGL: force the reset of the OpenGL lists :param askquestion: ask the question if True and a wx App is running (default), don't ask it otherwise """ self.plotted = False if unload and self.filename != '': if Path(self.filename).exists(): # An array can exists with a filename but no written data on disk # In this case, we don't want to delete the data in memory if askquestion and self.wx_exists: dlg = wx.MessageDialog(None, _('Do you want to unload data? \n If YES, the data will be reloaded from file once checekd \n If not saved, modifications will be lost !!'), style=wx.YES_NO) ret = dlg.ShowModal() if ret == wx.ID_YES: unload=True if unload: self.delete_lists() self.array = np.zeros([1]) if VERSION_RGB==1 : self.rgb = None self.loaded = False return if not forceresetOGL: if askquestion and self.wx_exists: dlg = wx.MessageDialog(None, _('Do you want to reset OpenGL lists?'), style=wx.YES_NO) ret = dlg.ShowModal() if ret == wx.ID_YES: self.delete_lists() if VERSION_RGB==1 : self.rgb = None else: self.delete_lists() if VERSION_RGB==1 : self.rgb = None
[docs] def get_header(self, abs:bool=True) -> header_wolf: """ Return a header_wolf object - different from the self object header :param abs: if True (default), return an absolute header (shifted origin) and translation set to 0. """ curhead = header_wolf() curhead.origx = self.origx curhead.origy = self.origy curhead.origz = self.origz curhead.dx = self.dx curhead.dy = self.dy curhead.dz = self.dz curhead.nbx = self.nbx curhead.nby = self.nby curhead.nbz = self.nbz curhead.translx = self.translx curhead.transly = self.transly curhead.translz = self.translz curhead.head_blocks = self.head_blocks.copy() curhead.wolftype = self.wolftype if abs: curhead.origx += curhead.translx curhead.origy += curhead.transly curhead.origz += curhead.translz curhead.translx = 0. curhead.transly = 0. curhead.translz = 0. return curhead
[docs] def set_header(self, header: header_wolf): """ Set the header from a header_wolf object """ self.origx = header.origx self.origy = header.origy self.origz = header.origz self.translx = header.translx self.transly = header.transly self.translz = header.translz self.dx = header.dx self.dy = header.dy self.dz = header.dz self.nbx = header.nbx self.nby = header.nby self.nbz = header.nbz self.head_blocks = header.head_blocks.copy() self.add_ops_sel()
def __add__(self, other): """Surcharge de l'opérateur d'addition""" newArray = WolfArray(whichtype=self.wolftype) newArray.nbx = self.nbx newArray.nby = self.nby newArray.dx = self.dx newArray.dy = self.dy newArray.origx = self.origx newArray.origy = self.origy newArray.translx = self.translx newArray.transly = self.transly if self.nbdims == 3: newArray.nbz = self.nbz newArray.dz = self.dz newArray.origz = self.origz newArray.translz = self.translz if type(other) == float: if other != 0.: newArray.array = np.ma.masked_array(self.array + other, self.array.mask) else: newArray.array = np.ma.masked_array(self.array + other.array, self.array.mask) newArray.count() assert newArray.array.dtype == self.array.dtype, _('Bad dtype') return newArray def __mul__(self, other): """Surcharge de l'opérateur d'addition""" newArray = WolfArray(whichtype=self.wolftype) newArray.nbx = self.nbx newArray.nby = self.nby newArray.dx = self.dx newArray.dy = self.dy newArray.origx = self.origx newArray.origy = self.origy newArray.translx = self.translx newArray.transly = self.transly if self.nbdims == 3: newArray.nbz = self.nbz newArray.dz = self.dz newArray.origz = self.origz newArray.translz = self.translz if type(other) == float: if other != 0.: newArray.array = np.ma.masked_array(self.array * other, self.array.mask) else: newArray.array = np.ma.masked_array(self.array * other.array, self.array.mask) newArray.count() assert newArray.array.dtype == self.array.dtype, _('Bad dtype') return newArray def __sub__(self, other): """Surcharge de l'opérateur de soustraction""" newArray = WolfArray(whichtype=self.wolftype) newArray.nbx = self.nbx newArray.nby = self.nby newArray.dx = self.dx newArray.dy = self.dy newArray.origx = self.origx newArray.origy = self.origy newArray.translx = self.translx newArray.transly = self.transly if self.nbdims == 3: newArray.nbz = self.nbz newArray.dz = self.dz newArray.origz = self.origz newArray.translz = self.translz if type(other) == float: if other != 0.: newArray.array = np.ma.masked_array(self.array - other, self.array.mask) else: newArray.array = np.ma.masked_array(self.array - other.array, self.array.mask) newArray.count() assert newArray.array.dtype == self.array.dtype, _('Bad dtype') return newArray def __pow__(self, other): """Surcharge de l'opérateur puissance""" newArray = WolfArray(whichtype=self.wolftype) newArray.nbx = self.nbx newArray.nby = self.nby newArray.dx = self.dx newArray.dy = self.dy newArray.origx = self.origx newArray.origy = self.origy newArray.translx = self.translx newArray.transly = self.transly if self.nbdims == 3: newArray.nbz = self.nbz newArray.dz = self.dz newArray.origz = self.origz newArray.translz = self.translz newArray.array = np.ma.masked_array(self.array ** other, self.array.mask) newArray.count() assert newArray.array.dtype == self.array.dtype, _('Bad dtype') return newArray def __truediv__(self, other): """Surcharge de l'opérateur division""" newArray = WolfArray(whichtype=self.wolftype) newArray.nbx = self.nbx newArray.nby = self.nby newArray.dx = self.dx newArray.dy = self.dy newArray.origx = self.origx newArray.origy = self.origy newArray.translx = self.translx newArray.transly = self.transly if self.nbdims == 3: newArray.nbz = self.nbz newArray.dz = self.dz newArray.origz = self.origz newArray.translz = self.translz if type(other) == float: if other != 0.: newArray.array = np.ma.masked_array(self.array / other, self.array.mask) else: newArray.array = np.ma.masked_array(np.where(other == 0., 0., self.array / other.array), self.array.mask) newArray.count() assert newArray.array.dtype == self.array.dtype, _('Bad dtype') return newArray
[docs] def concatenate(self, list_arr:list["WolfArray"], nullvalue:float = 0.): """ Concatenate the values from another WolfArrays into a new one :param list_arr: list of WolfArray objects :return: a new WolfArray :return_type: WolfArray """ list_arr:list[WolfArray] for curarray in list_arr: assert isinstance(curarray, WolfArray), "The list must contain WolfArray objects" assert curarray.nbdims == self.nbdims, "The arrays must have the same number of dimensions" assert curarray.dx == self.dx and curarray.dy == self.dy, "The arrays must have the same dx and dy" assert curarray.translx == 0 and curarray.transly == 0, "The translations must be zero" assert (np.abs(curarray.origx-self.origx)%int(self.dx) == 0)and(np.abs(curarray.origy-self.origy)%int(self.dy) == 0), "The origins are not compatible! You need to do some interpolation stuff" assert self.translx == 0 and self.transly == 0, "The translations must be zero" assert self.wolftype == curarray.wolftype, "The arrays must have the same wolftype" # create an array newArray = WolfArray(nullvalue=nullvalue, whichtype=self.wolftype) Xlim,Ylim = self.find_union(list_arr) newArray.origx = Xlim[0] newArray.origy = Ylim[0] newArray.dx = self.dx newArray.dy = self.dy newArray.nbx = int(np.diff(Xlim)[0]/newArray.dx) newArray.nby = int(np.diff(Ylim)[0]/newArray.dy) newArray.translx = 0. newArray.transly = 0. newArray.array = np.ma.masked_array(np.ones((newArray.nbx, newArray.nby), dtype=self.dtype) * nullvalue, mask=True, dtype=self.dtype) newArray.paste_all(self, mask_after=False) for curarray in list_arr: Array_intersect = curarray.find_intersection(self, ij=True) if Array_intersect is not None: logging.info(_("There is intersection. By default, the array {} overlaps the first one.".format(curarray.filename))) newArray.paste_all(curarray, mask_after=False) newArray.mask_data(nullvalue) return newArray
[docs] def mask_outsidepoly(self, myvect: vector, eps:float = 0., set_nullvalue:bool=True): """ Mask nodes outside a polygon and set values to nullvalue :param myvect: target vector in global coordinates """ # The polygon here is in world coordinates # (coord will be converted back with translation, origin and dx/dy) # (mesh coord, 0-based) # trouve les indices dans le polygone myij = self.get_ij_inside_polygon(myvect, usemask=True, eps=eps) self.array.mask.fill(True) # Mask everything # démasquage des mailles contenues self.array.mask[myij[:,0],myij[:,1]] = False if set_nullvalue: # annulation des valeurs en dehors du polygone self.set_nullvalue_in_mask() self.count()
[docs] def mask_insidepoly(self, myvect: vector, eps:float = 0., set_nullvalue:bool=True): """ Mask nodes inside a polygon and set values to nullvalue :param myvect: target vector in global coordinates """ # The polygon here is in world coordinates # (coord will be converted back with translation, origin and dx/dy) # (mesh coord, 0-based) # trouve les indices dans le polygone myij = self.get_ij_inside_polygon(myvect, usemask=False, eps=eps) if set_nullvalue: # annulation des valeurs en dehors du polygone self.array.data[myij[:,0],myij[:,1]] = self.nullvalue # masquage des mailles contenues self.array.mask[myij[:,0],myij[:,1]] = True self.count()
# ************************************************************************************************************************* # POSITION and VALUES associated to a vector/polygon/polyline # These functions can not be stored in header_wolf, because wa can use the mask of the array to limit the search # These functions are also present in WolfResults_2D, but they are not exactly the same due to the structure of the results # *************************************************************************************************************************
[docs] def get_xy_inside_polygon(self, myvect: vector | Polygon, usemask:bool=True): """ Return the coordinates inside a polygon :param myvect: target vector :param usemask: limit potential nodes to unmaksed nodes """ if isinstance(myvect, vector): # force la mise à jour des min/max myvect.find_minmax() # Conversion des coordonnées en numpy pour plus d'efficacité (du moins on espère) myvert = myvect.asnparray() elif isinstance(myvect, Polygon): myvert = myvect.exterior.coords[:-1] mypointsxy, mypointsij = self.get_xy_infootprint_vect(myvect) path = mpltPath.Path(myvert) inside = path.contains_points(mypointsxy) mypointsxy = mypointsxy[np.where(inside)] if usemask: mypointsij = mypointsij[np.where(inside)] mymask = np.logical_not(self.array.mask[mypointsij[:, 0], mypointsij[:, 1]]) mypointsxy = mypointsxy[np.where(mymask)] return mypointsxy
[docs] def get_xy_inside_polygon_shapely(self, myvect: vector | Polygon, usemask:bool=True): """ Return the coordinates inside a polygon :param myvect: target vector :param usemask: limit potential nodes to unmaksed nodes """ if isinstance(myvect, vector): # force la mise à jour des min/max myvect.find_minmax() polygon = myvect.asshapely_pol() elif isinstance(myvect, Polygon): polygon = myvect mypointsxy, mypointsij = self.get_xy_infootprint_vect(myvect) inside = np.asarray([polygon.contains(Point(x,y)) for x,y in mypointsxy]) mypointsxy = mypointsxy[np.where(inside)] if usemask: mypointsij = mypointsij[np.where(inside)] mymask = np.logical_not(self.array.mask[mypointsij[:, 0], mypointsij[:, 1]]) mypointsxy = mypointsxy[np.where(mymask)] return mypointsxy
[docs] def get_xy_under_polyline(self, myvect: vector, usemask:bool=True): """ Return the coordinates along a polyline :param myvect: target vector :param usemask: limit potential nodes to unmaksed nodes """ allij = self.get_ij_under_polyline(myvect, usemask) mypoints = [self.get_xy_from_ij(cur[0], cur[1]) for cur in allij] return mypoints
[docs] def get_ij_inside_polygon(self, myvect: vector, usemask:bool=True, eps:float = 0.): """ Return the indices inside a polygon :param myvect: target vector :param usemask: limit potential nodes to unmaksed nodes :param eps: epsilon for the intersection """ # force la mise à jour des min/max myvect.find_minmax() mypointsxy, mypointsij = self.get_xy_infootprint_vect(myvect, eps=eps) # Conversion des coordonnées en numpy pour plus d'efficacité (du moins on espère) myvert = myvect.asnparray() path = mpltPath.Path(myvert) inside = path.contains_points(mypointsxy) mypointsij = mypointsij[np.where(inside)] if usemask: mymask = np.logical_not(self.array.mask[mypointsij[:, 0], mypointsij[:, 1]]) mypointsij = mypointsij[np.where(mymask)] return mypointsij
[docs] def intersects_polygon(self, myvect: vector | Polygon, usemask:bool=True): """ Return True if the array intersects the polygon :param myvect: target vector :param usemask: limit potential nodes to unmaksed nodes """ return self.get_xy_inside_polygon(myvect, usemask).shape[0] > 0
[docs] def intersects_polygon_shapely(self, myvect: vector | Polygon, eps:float = 0., usemask:bool=True): """ Return True if the array intersects the polygon :param myvect: target vector :param usemask: limit potential nodes to unmaksed nodes """ return self.get_xy_inside_polygon_shapely(myvect, usemask).shape[0] > 0
[docs] def get_ij_under_polyline(self, myvect: vector, usemask:bool=True): """ Return the indices along a polyline :param myvect: target vector :param usedmask: limit potential nodes to unmaksed nodes """ ds = min(self.dx, self.dy) pts = myvect._refine2D(ds) allij = np.asarray([self.get_ij_from_xy(curpt.x, curpt.y) for curpt in pts]) allij = np.unique(allij, axis=0) # filter negative indexes allij = allij[np.where((allij[:, 0] >= 0) & (allij[:, 1] >= 0) & (allij[:, 0] < self.nbx) & (allij[:, 1] < self.nby))] if usemask: mymask = np.logical_not(self.array.mask[allij[:, 0], allij[:, 1]]) allij = allij[np.where(mymask)] return allij
[docs] def get_values_insidepoly(self, myvect: vector, usemask:bool=True, getxy:bool=False): """ Récupération des valeurs contenues dans un polygone :param usemask: (optional) restreint les éléments aux éléments non masqués de la matrice :param getxy: (optional) retourne en plus les coordonnées des points """ mypoints = self.get_xy_inside_polygon(myvect, usemask) myvalues = np.asarray([self.get_value(cur[0], cur[1]) for cur in mypoints]) if getxy: return myvalues, mypoints else: return myvalues, None
[docs] def get_values_underpoly(self, myvect: vector, usemask:bool=True, getxy:bool=False): """ Récupération des valeurs contenues sous une polyligne :param usemask: (optional) restreint les éléments aux éléments non masqués de la matrice :param getxy: (optional) retourne en plus les coordonnées des points """ mypoints = self.get_xy_under_polyline(myvect, usemask) myvalues = np.asarray([self.get_value(cur[0], cur[1]) for cur in mypoints]) if getxy: return myvalues, mypoints else: return myvalues, None
[docs] def get_all_values_insidepoly(self, myvect: vector, usemask:bool=True, getxy:bool=False): """ Récupération de toutes les valeurs contenues dans un polygone :param usemask: (optional) restreint les éléments aux éléments non masqués de la matrice :param getxy: (optional) retourne en plus les coordonnées des points ICI on retourne le résultat de get_values_insidepoly, car une seule matrice, mais une autre classe pourrait vouloir faure autre chose C'est le cas notamment de Wolfresults_2D """ return self.get_values_insidepoly(myvect, usemask,getxy)
[docs] def get_all_values_underpoly(self, myvect: vector, usemask:bool=True, getxy:bool=False): """ Récupération de toutes les valeurs sous la polyligne :param usemask: (optional) restreint les éléments aux éléments non masqués de la matrice :param getxy: (optional) retourne en plus les coordonnées des points ICI on retourne le résultat de get_values_underpoly, car une seule matrice, mais une autre classe pourrait vouloir faure autre chose C'est le cas notamment de Wolfresults_2D """ return self.get_values_underpoly(myvect, usemask, getxy)
# ************************************************************************************************************************* # END POSITION and VALUES associated to a vector/polygon/polyline # *************************************************************************************************************************
[docs] def reset(self): """ Reset the array to nullvalue """ if self.nbdims == 2: self.array[:, :] = self.nullvalue elif self.nbdims == 3: self.array[:, :, :] = self.nullvalue
[docs] def allocate_ressources(self): """ Memory Allocation according to dtype/wolftype""" if self.nbdims == 2: self.array = ma.ones([self.nbx, self.nby], order='F', dtype=self.dtype) elif self.nbdims == 3: self.array = ma.ones([self.nbx, self.nby, self.nbz], order='F', dtype=self.dtype) self.mask_reset()
[docs] def read_all(self, which_band = None): """ Lecture d'un Wolf aray depuis le nom de fichier """ THRESHOLD = 100_000_000 if not os.path.exists(self.filename): if self.wx_exists: logging.warning(_('No data file : ')+self.filename) return def check_threshold(nbx, nby, THRESHOLD) -> bool: if nbx * nby > THRESHOLD: logging.info(_('The array is very large > 100M pixels')) logging.info(_('Preloading is not recommended for efficiency reasons')) logging.info(_('Maybe could you crop the array to a smaller size')) logging.info(_('Disabling automatic colormap update')) self.mypal.automatic = False return True else: return False if self.filename.endswith('.tif') or self.filename.endswith('.tiff'): self.read_txt_header() if self.preload: update_min_max = check_threshold(self.nbx, self.nby, THRESHOLD) self.import_geotif(which= which_band, crop = self.cropini) self.loaded = True if update_min_max: self.mypal.distribute_values(self.array.min(), self.array.max()) elif self.filename.endswith('.npy'): self.read_txt_header() if self.preload: update_min_max = check_threshold(self.nbx, self.nby, THRESHOLD) self._import_npy(crop = self.cropini) self.loaded = True if update_min_max: self.mypal.distribute_values(self.array.min(), self.array.max()) else: self.read_txt_header() if self.nb_blocks > 0: # At this point, we have the header, we know the number of blocks, if exists self.myblocks = {} if self.preload: update_min_max = check_threshold(self.nbx, self.nby, THRESHOLD) self.read_data() self.loaded = True if update_min_max: self.mypal.distribute_values(self.array.min(), self.array.max())
[docs] def write_all(self, newpath:str | Path = None, EPSG:int = 31370): """ Ecriture de tous les fichiers d'un Wolf array :param newpath: new path and filename with extension -- if None, use the current filename :param EPSG: EPSG code for geotiff """ if isinstance(newpath, Path): newpath = str(newpath) if newpath is not None: self.filename = newpath if self.filename.endswith('.tif'): self.export_geotif(EPSG=EPSG) elif self.filename.endswith('.npy'): writing_header = True if self.dtype != self.array.data.dtype: logging.warning(_('Data type changed -- Force conversion to internal numpy array')) locarray = self.array.data if locarray.dtype == np.float32: self.wolftype = WOLF_ARRAY_FULL_SINGLE logging.warning(_('Data type changed to float32')) elif locarray.dtype == np.float64: self.wolftype = WOLF_ARRAY_FULL_DOUBLE logging.warning(_('Data type changed to float64')) elif locarray.dtype == np.int32: self.wolftype = WOLF_ARRAY_FULL_INTEGER logging.warning(_('Data type changed to int32')) elif locarray.dtype == np.int16: self.wolftype = WOLF_ARRAY_FULL_INTEGER16 logging.warning(_('Data type changed to int16')) elif locarray.dtype == np.int8: self.wolftype = WOLF_ARRAY_FULL_INTEGER8 logging.warning(_('Data type changed to int8')) elif locarray.dtype == np.uint8: self.wolftype = WOLF_ARRAY_FULL_UINTEGER8 logging.warning(_('Data type changed to uint8')) else: logging.error(_('Unsupported type in numpy file -- Abort wrting header file')) writing_header = False np.save(self.filename, self.array.data) if writing_header: self.write_txt_header() else: self.write_txt_header() self.write_array()
[docs] def get_rebin_shape_size(self, factor:float) -> tuple[tuple[int, int], tuple[float, float]]: """ Return the new shape after rebinning. newdx = dx * factor newdy = dy * factor The shape is adjusted to be a multiple of the factor. :param factor: factor of resolution change -- > 1.0 : decrease resolution, < 1.0 : increase resolution :type factor: float :return: new shape :rtype: Tuple[int, int], Tuple[float, float] """ newdx = self.dx * float(factor) newdy = self.dy * float(factor) newnbx = self.nbx newnby = self.nby if np.mod(self.nbx,factor) != 0 or np.mod(self.nby,factor) != 0 : newnbx = self.nbx newnby = self.nby if np.mod(self.nbx,factor) !=0: newnbx = self.nbx + factor - np.mod(self.nbx,factor) if np.mod(self.nby,factor) !=0: newnby = self.nby + factor - np.mod(self.nby,factor) newnbx = int(newnbx / factor) newnby = int(newnby / factor) return (newnbx, newnby), (newdx, newdy)
[docs] def get_rebin_header(self, factor:float) -> header_wolf: """ Return a new header after rebinning. :param factor: factor of resolution change -- > 1.0 : decrease resolution, < 1.0 : increase resolution :type factor: float :return: new header :rtype: header_wolf """ newshape, newdx_dy = self.get_rebin_shape_size(factor) newheader = self.get_header() newheader.nbx = newshape[0] newheader.nby = newshape[1] newheader.dx = newdx_dy[0] newheader.dy = newdx_dy[1] return newheader
[docs] def rebin(self, factor:float, operation:Literal['mean', 'sum', 'min', 'max', 'median'] ='mean', operation_matrix:"WolfArray"=None) -> None: """ Change resolution - **in place**. If you want to keep current data, copy the WolfArray into a new variable -> newWA = Wolfarray(mold=curWA). :param factor: factor of resolution change -- > 1.0 : decrease resolution, < 1.0 : increase resolution :type factor: float :param operation: operation to apply on the blocks ('mean', 'sum', 'min', 'max', 'median') :type operation: str, Rebin_Ops :param operation_matrix: operation matrix to apply on the blocks -- see the Enum "Rebin_Ops" for more infos. The matrix must have the same shape as the new array :type operation_matrix: WolfArray """ if operation_matrix is not None: tmp_header = self.get_rebin_header(factor) if not operation_matrix.is_like(tmp_header): logging.error(_("The operation matrix must have the same shape as the new array")) logging.info(_("You can use the get_rebin_header method to get the new header if you don't know it")) return logging.info(_("Operation matrix detected")) logging.info(_("The operation matrix will be used to apply the operation on the blocks")) else: operation = Rebin_Ops.get_ops(operation) if operation is None: logging.error(_("Operator not supported -- Must be a string in ['sum', 'mean', 'min', 'max', 'median'] or a Rebin_Ops Enum")) return if not callable(operation): logging.error(_("Operator not supported -- Must be a string in ['sum', 'mean', 'min', 'max', 'median'] or a Rebin_Ops Enum")) if np.mod(self.nbx,factor) != 0 or np.mod(self.nby,factor) != 0 : # The shape is adjusted to be a multiple of the factor. # Fill the array with nullvalue newnbx = self.nbx newnby = self.nby if np.mod(self.nbx,factor) !=0: newnbx = int(self.nbx + factor - np.mod(self.nbx,factor)) if np.mod(self.nby,factor) !=0: newnby = int(self.nby + factor - np.mod(self.nby,factor)) newarray = np.ma.ones((newnbx,newnby), dtype = self.dtype) * self.nullvalue newarray[:self.nbx,:self.nby] = self.array newarray.mask[:self.nbx,:self.nby] = self.array.mask self.array = newarray self.nbx = newnbx self.nby = newnby self.nbx = int(self.nbx / factor) self.nby = int(self.nby / factor) self.dx = self.dx * float(factor) self.dy = self.dy * float(factor) new_shape = (self.nbx, self.nby) if factor>1.: if operation_matrix is not None: # Reshape the input array to split it into blocks of size f x f reshaped_a = self.array.reshape(new_shape[0], int(factor), new_shape[1], int(factor)) # Swap axes to make blocks as separate dimensions reshaped_a = reshaped_a.swapaxes(1, 2) # Initialize the output matrix self.array = ma.masked_array(np.ones((new_shape[0], new_shape[1]), dtype= self.dtype) * self.nullvalue, dtype= self.dtype) # Check the dtype of the newly initialized array assert self.array.dtype == self.dtype, _('Bad dtype') # Vectorized operations for op_idx, operation in enumerate(Rebin_Ops.get_numpy_ops()): mask = (operation_matrix.array == op_idx) if np.any(mask): block_results = operation(reshaped_a, axis=(2, 3)) self.array[mask] = block_results[mask] else: compression_pairs = [(d, c // d) for d, c in zip(new_shape, self.array.shape)] flattened = [l for p in compression_pairs for l in p] self.array = operation(self.array.reshape(flattened), axis=(1, 3)).astype(self.dtype) self.set_nullvalue_in_mask() else: self.array = np.kron(self.array, np.ones((int(1/factor), int(1/factor)), dtype=self.array.dtype)) self.mask_data(self.nullvalue) self.count() # rebin must not change the type of the array assert self.array.dtype == self.dtype, _('Bad dtype')
[docs] def read_txt_header(self): """ Read header from txt file Supercharged by WolfArray to avoid explicit call to read_txt_header with parameters """ super().read_txt_header(self.filename)
[docs] def write_txt_header(self): """ Write header to txt file Supercharged by WolfArray to avoid explicit call to write_txt_header with parameters """ super().write_txt_header(self.filename+'.txt', self.wolftype, forceupdate=True)
[docs] def read_data(self): """Opération de lecture des données depuis le fichier connu""" if not os.path.exists(self.filename): if self.wx_exists: logging.warning(_('No data file : ')+self.filename) return if self.cropini is None: with open(self.filename, 'rb') as f: self._read_binary_data(f) else: tmpdx = self.dx if type(self.cropini) is np.ndarray: pass elif type(self.cropini) is list: pass else: newcrop = CropDialog(None) if self.mapviewer is not None: bounds = self.mapviewer.get_canvas_bounds() newcrop.dx.Value = str(self.dx) newcrop.dy.Value = str(self.dy) # newcrop.dx.Enable(False) # newcrop.dy.Enable(False) newcrop.ox.Value = str(float((bounds[0] // 50.) * 50.)) newcrop.ex.Value = str(float((bounds[2] // 50.) * 50.)) newcrop.oy.Value = str(float((bounds[1] // 50.) * 50.)) newcrop.ey.Value = str(float((bounds[3] // 50.) * 50.)) badvalues = True while badvalues: badvalues = False ret = newcrop.ShowModal() if ret == wx.ID_CANCEL: newcrop.Destroy() return else: self.cropini = [[float(newcrop.ox.Value), float(newcrop.ex.Value)], [float(newcrop.oy.Value), float(newcrop.ey.Value)]] tmpdx = float(newcrop.dx.Value) tmpdy = float(newcrop.dy.Value) if self.dx != tmpdx or self.dy != tmpdy: if tmpdx / self.dx != tmpdy / self.dy: badvalues = True newcrop.Destroy() with open(self.filename, 'rb') as f: if self.wolftype == WOLF_ARRAY_FULL_SINGLE or self.wolftype == WOLF_ARRAY_FULL_SINGLE_3D: imin, jmin = self.get_ij_from_xy(self.cropini[0][0], self.cropini[1][0]) imax, jmax = self.get_ij_from_xy(self.cropini[0][1], self.cropini[1][1]) imin = int(imin) jmin = int(jmin) imax = int(imax) jmax = int(jmax) oldnbx = self.nbx oldnby = self.nby self.nbx = imax - imin self.nby = jmax - jmin self.origx, self.origy = self.get_xy_from_ij(imin, jmin) self.origx -= self.dx / 2. self.origy -= self.dy / 2. locarray = np.zeros([self.nbx, self.nby]) # on boucle sur les 'j' nbi = imax - imin if self.filename.endswith('.flt'): f.seek(((oldnby - jmax) * oldnbx + imin) * 4) else: f.seek((imin + jmin * oldnbx) * 4) for j in range(jmin, jmax): locarray[0:imax - imin, j - jmin] = np.frombuffer(f.read(4 * nbi), dtype=np.float32) f.seek((oldnbx - nbi) * 4, 1) self.array = ma.masked_array(locarray, dtype=np.float32) if self.filename.endswith('.flt'): # fichier .flt --> miroir "horizontal" self.array = np.fliplr(self.array) if self.dx != tmpdx: self.rebin(tmpdx / self.dx) self.loaded = True
[docs] def _read_binary_data(self, f, seek=0): """ Read binary data from file """ if seek > 0: f.seek(0) if self.wolftype == WOLF_ARRAY_FULL_SINGLE or self.wolftype == WOLF_ARRAY_FULL_SINGLE_3D: locarray = np.frombuffer(f.read(self.nbx * self.nby * 4), dtype=np.float32) self.array = ma.masked_array(locarray.copy(), dtype=np.float32) elif self.wolftype == WOLF_ARRAY_FULL_LOGICAL: locarray = np.frombuffer(f.read(self.nbx * self.nby * 2), dtype=np.int16) self.array = ma.masked_array(locarray.copy(), dtype=np.int16) elif self.wolftype == WOLF_ARRAY_FULL_DOUBLE: locarray = np.frombuffer(f.read(self.nbx * self.nby * 8), dtype=np.float64) self.array = ma.masked_array(locarray.copy(), dtype=np.float64) elif self.wolftype == WOLF_ARRAY_FULL_INTEGER: locarray = np.frombuffer(f.read(self.nbx * self.nby * 4), dtype=np.int32) self.array = ma.masked_array(locarray.copy(), dtype=np.int32) elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]: locarray = np.frombuffer(f.read(self.nbx * self.nby * 2), dtype=np.int16) self.array = ma.masked_array(locarray.copy(), dtype=np.int16) elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER8]: locarray = np.frombuffer(f.read(self.nbx * self.nby * 2), dtype=np.int8) self.array = ma.masked_array(locarray.copy(), dtype=np.int8) elif self.wolftype in [WOLF_ARRAY_FULL_UINTEGER8]: locarray = np.frombuffer(f.read(self.nbx * self.nby * 2), dtype=np.uint8) self.array = ma.masked_array(locarray.copy(), dtype=np.uint8) if self.nbdims == 2: self.array = self.array.reshape(self.nbx, self.nby, order='F') if self.flipupd: self.array=np.fliplr(self.array) elif self.nbdims == 3: self.array = self.array.reshape(self.nbx, self.nby, self.nbz, order='F')
[docs] def write_array(self): """ Ecriture du tableau en binaire """ self.array.data.transpose().tofile(self.filename, "")
[docs] def write_xyz(self, fname:str): """ Ecriture d un fichier xyz avec toutes les données du Wolf Array """ my_file = XYZFile(fname) my_file.fill_from_wolf_array(self) my_file.write_to_file()
[docs] def get_xyz(self, which='all') -> np.ndarray: """ Return an array of xyz coordinates and values """ x1, y1 = self.get_xy_from_ij(0, 0) x2, y2 = self.get_xy_from_ij(self.nbx, self.nby, aswolf=True) xloc = np.linspace(x1, x2, self.nbx) yloc = np.linspace(y1, y2, self.nby) xy = np.meshgrid(xloc, yloc, indexing='xy') xyz = np.column_stack([xy[0].flatten(), xy[1].flatten(), self.array.flatten()]) filter = np.invert(ma.getmaskarray(self.array).flatten()) return xyz[filter]
@classmethod
[docs] def set_general_frame_from_xyz(cls, fname:str, dx:float, dy:float, border_size:int=5, delimiter:str=',', fillin:bool=False): """ Lecture d'un fichier texte xyz et initialisation des données de base :param fname: nom du fichier xyz :param dx: pas en x :param dy: pas en y :param border_size: nombre de mailles de bordure en plus de l'extension spatiale du fichier """ my_file = XYZFile(fname, delimiter=delimiter) my_file.read_from_file() (xlim, ylim) = my_file.get_extent() Array = WolfArray() Array.dx = dx Array.dy = dy Array.origx = m.floor(xlim[0]) - dx/2. - float(border_size) * Array.dx Array.origy = m.floor(ylim[0]) - dy/2. - float(border_size) * Array.dy Array.nbx = int((m.floor(xlim[1]) - m.ceil(xlim[0])) / Array.dx) + 1 + 2*border_size Array.nby = int((m.floor(ylim[1]) - m.ceil(ylim[0])) / Array.dy) + 1 + 2*border_size Array.array = np.ma.zeros((Array.nbx, Array.nby), dtype=np.float32) if fillin: Array.fillin_from_xyz(my_file.xyz) return Array
@classmethod
[docs] def set_general_frame_from_xyz_dir(cls, path:str, bounds:list, delimiter:str=',', dxdy:tuple[float, float]= None, border_size:int=5, fillin:bool=True): """ Lecture d'un dossier contenant des fichiers texte xyz, initialisation des données de base et chargement de la matrice Renvoie un WolfArray or False si le fichier n'est pas dans les limites :param path: chemin du dossier avec les fichier xyz :dtype path: str :param bounds: limites de l'extension spatiale :dtype bounds: list :param delimiter: délimiteur des fichiers xyz :dtype delimiter: str :param border_size: nombre de mailles de bordure en plus de l'extension spatiale du fichier :dtype border_size: int """ Data_xyz = XYZFile('nothing.xyz', folder=path, bounds=bounds, delimiter=delimiter) if Data_xyz.nblines == 0: logging.info(f"File not in the boundaries for {path.split(os.sep)[-1]}") return False xlim, ylim = Data_xyz.get_extent() if dxdy is None: # We assume dx and dy are equals within xyz file dx = np.diff(Data_xyz.xyz[0:2,0])[0] logging.info(f"dx = {dx} ; dy = {dx}") dy = dx else: dx,dy = dxdy assert dx is not None and dy is not None, _('dx and dy must be defined') Array = WolfArray() Array.dx = dx Array.dy = dy Array.origx = m.floor(xlim[0]) -dx/2. - float(border_size) * Array.dx Array.origy = m.floor(ylim[0]) -dy/2. - float(border_size) * Array.dy Array.nbx = int((m.floor(xlim[1]) - m.ceil(xlim[0])) / Array.dx) +1 + 2*border_size Array.nby = int((m.floor(ylim[1]) - m.ceil(ylim[0])) / Array.dy) +1 + 2*border_size Array.array = np.ma.zeros((Array.nbx, Array.nby)) if fillin: Array.fillin_from_xyz(Data_xyz.xyz) return Array
[docs] def fillin_from_xyz(self, xyz:np.ndarray): """ Remplissage du tableau à partir d'un tableau xyz """ if self.dtype == np.float32: self.array.data[self.get_ij_from_xy(xyz[:, 0], xyz[:, 1])] = np.float32(xyz[:, 2]) elif self.dtype == np.float64: self.array.data[self.get_ij_from_xy(xyz[:, 0], xyz[:, 1])] = np.float64(xyz[:, 2]) elif self.dtype == np.int32: self.array.data[self.get_ij_from_xy(xyz[:, 0], xyz[:, 1])] = np.int32(xyz[:, 2]) elif self.dtype == np.int16: self.array.data[self.get_ij_from_xy(xyz[:, 0], xyz[:, 1])] = np.int16(xyz[:, 2]) elif self.dtype == np.int8: self.array.data[self.get_ij_from_xy(xyz[:, 0], xyz[:, 1])] = np.int8(xyz[:, 2]) else: logging.warning(_('Type not supported : ')+str(self.dtype))
[docs] def fillin_from_ijz(self, ijz:np.ndarray): """ Remplissage du tableau à partir d'un tableau ijz """ try: i = ijz[:, 0].astype(int) j = ijz[:, 1].astype(int) except Exception as e: logging.error(_('Error in conversion of ijz to int : ')+str(e)) return if self.dtype == np.float32: self.array.data[i, j] = np.float32(ijz[:, 2]) elif self.dtype == np.float64: self.array.data[i, j] = np.float64(ijz[:, 2]) elif self.dtype == np.int32: self.array.data[i, j] = np.int32(ijz[:, 2]) elif self.dtype == np.int16: self.array.data[i, j] = np.int16(ijz[:, 2]) elif self.dtype == np.int8: self.array.data[i, j] = np.int8(ijz[:, 2]) else: logging.warning(_('Type not supported : ')+str(self.dtype))
[docs] def mask_force_null(self): """ Force to unmask all and mask null value """ self.mask_reset() self.mask_data(self.nullvalue) self.reset_plot()
[docs] def unmask(self): """ alias to mask_reset """ self.mask_reset()
[docs] def mask_clear(self): """ alias to mask_reset """ self.mask_reset()
[docs] def mask_reset(self): """ Unmask everything """ if self.nbdims == 2: # FIXME if mask linking should work # as expected, then we do: self.array.mask.fill(0.0) # to avoid replacing the linked mask by a (non linked) one. if isinstance(self.array.mask, np.bool_): # mask is not an array, but a single boolean value self.array.mask = np.zeros(self.array.shape) else: self.array.mask.fill(False) # False == not masked self.nbnotnull = self.nbx * self.nby elif self.nbdims == 3: if isinstance(self.array.mask, np.bool_): self.array.mask = np.zeros((self.nbx, self.nby, self.nbz)) else: self.array.mask.fill(False) # False == not masked self.nbnotnull = self.nbx * self.nby * self.nbz
[docs] def count(self): """ Count the number of not masked values """ self.nbnotnull = self.array.count() return self.nbnotnull
[docs] def mask_data(self, value): """ Mask cell where values are equal to `value`""" if self.array is None: return try: if not (np.isnan(value) or math.isnan(value)): if self.wolftype in [WOLF_ARRAY_FULL_INTEGER]: value=np.int32(value) elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]: value=np.int16(value) elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER8]: value=np.int8(value) elif self.wolftype in [WOLF_ARRAY_FULL_UINTEGER8]: value=np.uint8(value) except: logging.error(_('Type not supported : {} - {}'.format(value, type(value)))) logging.warning(_('Masking operation compromised')) if value is not None: if isinstance(self.array.mask, np.bool_): # mask is not an array, but a single boolean value # we must create a new mask array if np.isnan(value) or math.isnan(value): self.array.mask = np.isnan(self.array.data) else: self.array.mask = self.array.data == value else: # Copy to prevent unlinking the mask (see `mask_reset`) if np.isnan(value) or math.isnan(value): np.copyto(self.array.mask, np.isnan(self.array.data)) # self.array.mask[:,:] = np.isnan(self.array.data) else: np.copyto(self.array.mask, self.array.data == value) # self.array.mask[:,:] = self.array.data == value self.count()
[docs] def mask_lower(self, value): """ Mask cell where values are strictly lower than `value` """ if self.array is None: return # Copy to prevent unlinking the mask (see `mask_reset`) np.copyto(self.array.mask, self.array.data < value) self.count()
[docs] def mask_lowerequal(self, value): """ Mask cell where values are lower or equal than `value`""" if self.array is None: return # Copy to prevent unlinking the mask (see `mask_reset`) np.copyto(self.array.mask, self.array.data <= value) self.count()
[docs] def mask_greater(self, value): """ Mask cell where values are strictly greater than `value` """ if self.array is None: return # Copy to prevent unlinking the mask (see `mask_reset`) np.copyto(self.array.mask, self.array.data > value) self.count()
[docs] def mask_greaterequal(self, value): """ Mask cell where values are greater or equal than `value`""" if self.array is None: return # Copy to prevent unlinking the mask (see `mask_reset`) np.copyto(self.array.mask, self.array.data >= value) self.count()
[docs] def set_nullvalue_in_mask(self): """ Set nullvalue in masked cells """ if self.array is None: return self.array.data[self.array.mask] = self.nullvalue
[docs] def reset_plot(self, whichpal=0, mimic=True): """ Reset plot of the array """ self.count() if self.plotted: self.delete_lists() if mimic: for cur in self.linkedarrays: if id(cur.mypal) == id(self.mypal) and id(self) !=id(cur): cur.reset_plot(whichpal=whichpal, mimic=False) self.updatepalette(whichpal) if self.mapviewer is not None: self.mapviewer.Refresh()
[docs] def mask_allexceptdata(self, value): """ Mask cell where values are different from `value`""" if self.array is None: return # Copy to prevent unlinking the mask (see `mask_reset`) np.copyto(self.array.mask, self.array.data != value) self.count()
[docs] def mask_invert(self): """ Invert the mask """ if self.array is None: return # Copy to prevent unlinking the mask (see `mask_reset`) np.copyto(self.array.mask, np.logical_not(self.array.mask)) self.count()
[docs] def meshgrid(self, mode:Literal['gc', 'borders']='gc'): """ Création d'un maillage 2D :param mode: 'gc' pour les centres de mailles, 'borders' pour les bords de mailles """ x_start = self.translx + self.origx y_start = self.transly + self.origy if mode == 'gc': x_discr = np.linspace(x_start + self.dx / 2, x_start + self.nbx * self.dx - self.dx / 2, self.nbx) y_discr = np.linspace(y_start + self.dy / 2, y_start + self.nby * self.dy - self.dy / 2, self.nby) elif mode == 'borders': x_discr = np.linspace(x_start, x_start + self.nbx * self.dx, self.nbx + 1) y_discr = np.linspace(y_start, y_start + self.nby * self.dy, self.nby + 1) y, x = np.meshgrid(y_discr, x_discr) return x, y
[docs] def crop_masked_at_edges(self): """ Crop the array to remove masked cells at the edges of the array :return: cropped array, WolfArray instance """ # Get max indexes Existing_indexes = np.argwhere(self.array.mask!=True) Max_index = np.max(Existing_indexes, 0) Min_index = np.min(Existing_indexes, 0) # convert index in location xMax, yMax = self.convert_ij2xy_np(Max_index.reshape((1,2))) xMin, yMin = self.convert_ij2xy_np(Min_index.reshape((1,2))) # crop nbx=np.ceil((xMax[0]-xMin[0])/self.dx).astype(int)+1 #+1 otherwise you remove one line nby=np.ceil((yMax[0]-yMin[0])/self.dy).astype(int)+1 #+1 otherwise you remove one column return self.crop(int(Min_index[0]),int(Min_index[1]),int(nbx),int(nby))
[docs] def crop(self, i_start:int, j_start:int, nbx:int, nby:int, k_start:int=1, nbz:int=1): """ Crop the array :param i_start: start index in x :param j_start: start index in y :param nbx: number of cells in x :param nby: number of cells in y :param k_start: start index in z :param nbz: number of cells in z :return: cropped array, WolfArray instance """ assert type(i_start) == int, "i_start must be an integer" assert type(j_start) == int, "j_start must be an integer" assert type(nbx) == int, "nbx must be an integer" assert type(nby) == int, "nby must be an integer" assert type(k_start) == int, "k_start must be an integer" assert type(nbz) == int, "nbz must be an integer" newWolfArray = WolfArray(nullvalue=self.nullvalue) newWolfArray.nbx = nbx newWolfArray.nby = nby newWolfArray.dx = self.dx newWolfArray.dy = self.dy newWolfArray.origx = self.origx + float(i_start) * self.dx newWolfArray.origy = self.origy + float(j_start) * self.dy newWolfArray.translx = self.translx newWolfArray.transly = self.transly if self.nbdims == 3: newWolfArray.nbz = nbz newWolfArray.dz = self.dz newWolfArray.origz = self.origz + float(k_start) * self.dz newWolfArray.translz = self.translz newWolfArray.array = self.array[i_start:i_start + nbx, j_start:j_start + nby, k_start:k_start + nbz] elif self.nbdims == 2: newWolfArray.array = self.array[i_start:i_start + nbx, j_start:j_start + nby] return newWolfArray
[docs] def extend(self, x_ext:int, y_ext:int): """ Extend the array Crop is the opposite """ assert x_ext >= 0 and y_ext >= 0 assert self.nbdims == 2, "Only 2D arrays are supported" # Remember WolfArrays are masked. Therefore # we need to extend mask. In this case, not specifying # anything will expand the mask with "dont mask" # values. # extend vertically ex = self.array if x_ext > 0: # dtype is important: it allows to keep a Fortran friendly # type I think. ex = ma.append( ex, np.array([0] * ex.shape[1] * x_ext, dtype=ex.dtype).reshape((x_ext, -1)), axis=0, ) self.nbx += x_ext # extend horizontally if y_ext > 0: ex = ma.append( ex, np.array([0] * ex.shape[0] * y_ext, dtype=ex.dtype).reshape((-1, y_ext)), axis=1, ) self.nby += y_ext self.array = ex self.mask_data(self.nullvalue)
[docs] def extremum(self, which:Literal['min','max']='min'): """ Return the extremum value """ if which == 'min': my_extr = np.amin(self.array) elif which == 'max': my_extr = np.amax(self.array) else: logging.warning(_('Extremum not supported : ')+which) my_extr = -99999. return my_extr
[docs] def get_value(self, x:float, y:float, z:float=0., nullvalue:float=-99999): """ Return the value at given coordinates :param x: x coordinate :param y: y coordinate :param z: z coordinate :param nullvalue: value to return if the point is outside the array """ if isinstance(self.array.mask, np.bool_): logging.error(_('Mask is not an array - Please check your data')) return nullvalue if self.nbdims == 2: i, j = self.get_ij_from_xy(x, y) if i >= 0 and i < self.nbx and j >= 0 and j < self.nby: if self.array.mask[i, j]: value = nullvalue else: value = self.array[i, j] else: value = nullvalue elif self.nbdims == 3: i, j, k = self.get_ij_from_xy(x, y, z) if i >= 0 and i < self.nbx and j >= 0 and j < self.nby and k >= 0 and k < self.nbz: if self.array.mask[i, j, k]: value = nullvalue else: value = self.array[i, j, k] else: value = nullvalue #FIXME : forcing to convert to float is not a good idea return float(value)
[docs] def get_xlim(self, window_x:float, window_y:float): """ Return the limits in x for a given window size :param window_x: window size in x :param window_y: window size in y """ a_x = window_x / (float(self.nbx) * self.dx) a_y = window_y / (float(self.nby) * self.dy) if a_x < a_y: # C'est la mise à l'échelle selon x qui compte return (self.origx + self.translx, self.origx + self.translx + self.nbx * self.dx) else: # C'est la mise à l'échelle selon y qui compte l = (self.nby * self.dy) / window_y * window_x return (self.origx + self.translx + self.nbx * self.dx * 0.5 - l * 0.5, self.origx + self.translx + self.nbx * self.dx * 0.5 + l * 0.5)
[docs] def get_ylim(self, window_x:float, window_y:float): """ Retrun the limits in y for a given window size :param window_x: window size in x :param window_y: window size in y """ a_x = window_x / (float(self.nbx) * self.dx) a_y = window_y / (float(self.nby) * self.dy) if a_x < a_y: # C'est la mise à l'échelle selon x qui compte l = (self.nbx * self.dx) / window_x * window_y return (self.origy + self.transly + self.nby * self.dy * 0.5 - l * 0.5, self.origy + self.transly + self.nby * self.dy * 0.5 + l * 0.5) else: # C'est la mise à l'échelle selon y qui compte return (self.origy + self.transly, self.origy + self.transly + self.nby * self.dy)
[docs] def get_working_array(self, onzoom:list[float]=[]): """ Return the part of the array in the zoom window :param onzoom: zoom window -- [xmin, xmax, ymin, ymax] """ if onzoom != []: istart, jstart = self.get_ij_from_xy(onzoom[0], onzoom[2]) iend, jend = self.get_ij_from_xy(onzoom[1], onzoom[3]) istart = 0 if istart < 0 else istart jstart = 0 if jstart < 0 else jstart iend = self.nbx if iend > self.nbx else iend jend = self.nby if jend > self.nby else jend partarray = self.array[istart:iend, jstart:jend] self.nbnotnullzoom = partarray.count() return partarray[partarray.mask == False] else: return self.array[self.array.mask == False]
[docs] def updatepalette(self, which:int=0, onzoom=[]): """ Update the palette/colormap :param which: which palette to update :param onzoom: zoom window -- [xmin, xmax, ymin, ymax] """ if self.array is None: return if self.mypal.automatic: if onzoom != []: self.mypal.isopop(self.get_working_array(onzoom), self.nbnotnullzoom) else: self.mypal.isopop(self.get_working_array(), self.nbnotnull) if VERSION_RGB==1 : if self.nbx * self.nby > 1_000_000 : logging.info(_('Computing colors')) if self.wolftype not in [WOLF_ARRAY_FULL_SINGLE, WOLF_ARRAY_FULL_INTEGER8, WOLF_ARRAY_FULL_UINTEGER8]: # FIXME: Currently, only some types are supported in Cython/OpenGL library self._tmp_float32 = self.array.astype(dtype=np.float32) self.rgb = self.mypal.get_rgba(self._tmp_float32) else: self._tmp_float32 = None self.rgb = self.mypal.get_rgba(self.array) if self.nbx * self.nby > 1_000_000 : logging.info(_('Colors computed')) elif VERSION_RGB in [2 ,3]: if self.wolftype not in [WOLF_ARRAY_FULL_SINGLE, WOLF_ARRAY_FULL_INTEGER8, WOLF_ARRAY_FULL_UINTEGER8, WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2, WOLF_ARRAY_FULL_INTEGER, WOLF_ARRAY_FULL_DOUBLE, WOLF_ARRAY_HILLSHAPE]: # FIXME: Currently, only some types are supported in Cython/OpenGL library self._tmp_float32 = self.array.astype(dtype=np.float32) else: self._tmp_float32 = None if VERSION_RGB==1 : if self.shading: pond = (self.shaded.array-.5)*2. pmin = (1. - self.shaded.alpha) * self.rgb pmax = self.shaded.alpha * np.ones(self.rgb.shape) + (1. - self.shaded.alpha) * self.rgb for i in range(4): self.rgb[pond<0,i] = self.rgb[pond<0,i] * (1.+pond[pond<0]) - pmin[pond<0,i] * pond[pond<0] self.rgb[pond>0,i] = self.rgb[pond>0,i] * (1.-pond[pond>0]) + pmax[pond>0,i] * pond[pond>0] if VERSION_RGB==1 : self.rgb[self.array.mask] = [1., 1., 1., 0.] if self.myops is not None: # update the wx self.myops.update_palette() if len(self.viewers3d) > 0: for cur in self.viewers3d: cur.update_palette(self.idx, self.mypal.get_colors_f32().flatten(), self.mypal.values.astype(np.float32))
[docs] def plot(self, sx:float=None, sy:float=None, xmin:float=None, ymin:float=None, xmax:float=None, ymax:float=None, size:float=None): """ Plot the array - OpenGL :param sx: scale along X :param sy: scale along Y :param xmin: Lower-Left coordinates in X :param ymin: Lower-Left coordinates in Y :param xmax: Upper-Right coordinates in X :param ymax: Upper-Right coordinates in Y :param size: size of the window (not used here but necessary for compatibility with Element_To_Draw) """ if not self.plotted: return self.plotting = True if self.plotted and sx is None: sx = self.sx sy = self.sy xmin = self.xmin xmax = self.xmax ymin = self.ymin ymax = self.ymax else: self.sx = sx self.sy = sy self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax nbpix = min(sx * self.dx, sy * self.dy) if nbpix >= 1.: # si une maille est tracée sur au moins 2 pixels curscale = 1 elif math.ceil(1. / nbpix) <= 3: curscale = math.ceil(math.ceil(1. / nbpix)) else: curscale = math.ceil(math.ceil(1. / nbpix) / 3) * 3 curscale = max(curscale, 1) cursize = curscale # 2.**curscale curnbx = max(math.ceil(float(self.nbx) / (self.gridsize * cursize)), 1) curnby = max(math.ceil(float(self.nby) / (self.gridsize * cursize)), 1) if not cursize in self.mygrid.keys(): self.mygrid[cursize] = {} curlist = self.mygrid[cursize] curlist['nbx'] = curnbx curlist['nby'] = curnby numlist = glGenLists(curnbx * curnby) curlist['firstlist'] = numlist logging.debug(_('OpenGL lists - allocation') + ' - ' +_('first list')+str(numlist) ) curlist['mylists'] = np.linspace(numlist, numlist + curnbx * curnby - 1, num=curnbx * curnby, dtype=np.integer).reshape((curnbx, curnby), order='F') curlist['done'] = np.zeros((curnbx, curnby), dtype=np.integer, order='F') if (curnbx == 1 and curnby == 1): if (self.gridmaxscales == -1): self.gridmaxscales = curscale elif curscale > self.gridmaxscales: curscale = self.gridmaxscales cursize = curscale curnbx = max(math.ceil(float(self.nbx) / (self.gridsize * cursize)), 1) curnby = max(math.ceil(float(self.nby) / (self.gridsize * cursize)), 1) istart, jstart = self.get_ij_from_xy(xmin, ymin, scale=cursize * float(self.gridsize)) iend, jend = self.get_ij_from_xy(xmax, ymax, scale=cursize * float(self.gridsize)) istart = max(0, istart) jstart = max(0, jstart) iend = min(curnbx - 1, iend) jend = min(curnby - 1, jend) if self.wolftype != WOLF_ARRAY_HILLSHAPE and self.shading: self.hillshade(self.azimuthhill, self.altitudehill) if VERSION_RGB==1 : self.updatepalette(0) self.shaded.updatepalette(0) self.shading=False if self.mapviewer is not None: from .PyDraw import draw_type if not self.idx + '_hillshade' in self.mapviewer.get_list_keys(drawing_type=draw_type.ARRAYS, checked_state= None) :# .added['arrays'].keys(): self.mapviewer.add_object('array', newobj=self.shaded, ToCheck=True, id=self.idx + '_hillshade') try: glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) for j in range(jstart, jend + 1): for i in range(istart, iend + 1): self.fillonecellgrid(cursize, i, j) try: mylistdone = self.mygrid[cursize]['done'][i, j] if mylistdone == 1: mylist = self.mygrid[cursize]['mylists'][i, j] if mylist > 0: glCallList(self.mygrid[cursize]['mylists'][i, j]) except Exception as e: logging.error(_('OpenGL error in WolfArray.plot 1 -- Please report this case with the data file and the context in which the error occured')) logging.error(e) glDisable(GL_BLEND) except Exception as e: logging.error(_('OpenGL error in WolfArray.plot 2 -- Please report this case with the data file and the context in which the error occured')) logging.error(e) self.plotting = False # Plot selected nodes if self.mngselection is not None: self.mngselection.plot_selection() # Plot zones attached to array if self.myops is not None: self.myops.myzones.plot()
[docs] def delete_lists(self): """ Delete OpenGL lists """ logging.debug(_('OpenGL lists - deletion -- array {}'.format(self.idx))) for idx, cursize in enumerate(self.mygrid): curlist = self.mygrid[cursize] nbx = curlist['nbx'] nby = curlist['nby'] first = curlist['firstlist'] glDeleteLists(first, nbx * nby) logging.debug(str(first)+' '+str(nbx * nby)) self.mygrid = {} self.gridmaxscales = -1
[docs] def plot_matplotlib(self, figax:tuple=None, getdata_im:bool=False): """ Plot the array - Matplotlib version Using imshow and RGB array """ self.mask_data(self.nullvalue) self.updatepalette(0) if figax is None: fig, ax = plt.subplots() else: fig, ax = figax im = ax.imshow(self.array.transpose(), origin='lower', cmap=self.mypal, extent=(self.origx, self.origx + self.dx * self.nbx, self.origy, self.origy + self.dy * self.nby)) ax.set_aspect('equal') if getdata_im: return fig, ax, im else: return fig, ax
[docs] def fillonecellgrid(self, curscale, loci, locj, force=False): """ Fill one cell of the plotted grid """ cursize = curscale if not cursize in self.mygrid.keys(): return curlist = self.mygrid[cursize] exists = curlist['done'][loci, locj] if exists == 0 or force: logging.debug('Computing OpenGL List for '+str(loci)+';' +str(locj) + ' on scale factor '+str(curscale)) ox = self.origx + self.translx oy = self.origy + self.transly dx = self.dx dy = self.dy numlist = int(curlist['mylists'][loci, locj]) logging.debug(' - creation list{}'.format(numlist)) try: glNewList(numlist, GL_COMPILE) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) step = self.gridsize * cursize jstart = max(locj * step, 0) jend = min(jstart + step, self.nby) istart = max(loci * step, 0) iend = min(istart + step, self.nbx) try: if VERSION_RGB == 1: if self.wolftype != WOLF_ARRAY_FULL_SINGLE: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_uint8(self._tmp_float32, self.rgb, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, np.uint8(self.alpha*255)) elif self.nbnotnull > 0: wolfogl.addmeall_uint8(self._tmp_float32, self.rgb, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, np.uint8(self.alpha*255)) else: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_uint8(self.array, self.rgb, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, np.uint8(self.alpha*255)) elif self.nbnotnull > 0: wolfogl.addmeall_uint8(self.array, self.rgb, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, np.uint8(self.alpha*255)) elif VERSION_RGB == 2: if self.wolftype == WOLF_ARRAY_FULL_INTEGER8: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_int8_pal(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst)) elif self.nbnotnull > 0: wolfogl.addmeall_int8_pal(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst)) elif self.wolftype == WOLF_ARRAY_FULL_UINTEGER8: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_uint8_pal(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst)) elif self.nbnotnull > 0: wolfogl.addmeall_uint8_pal(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst)) elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_int16_pal(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst)) elif self.nbnotnull > 0: wolfogl.addmeall_int16_pal(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst)) elif self.wolftype == WOLF_ARRAY_FULL_INTEGER: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_int_pal(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst)) elif self.nbnotnull > 0: wolfogl.addmeall_int_pal(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst)) elif self.wolftype == WOLF_ARRAY_FULL_DOUBLE: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_double_pal(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst)) elif self.nbnotnull > 0: wolfogl.addmeall_double_pal(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst)) elif self.wolftype not in [WOLF_ARRAY_FULL_SINGLE, WOLF_ARRAY_HILLSHAPE]: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_pal(self._tmp_float32, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), -1.) elif self.nbnotnull > 0: wolfogl.addmeall_pal(self._tmp_float32, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), -1.) else: clr_float = self.mypal.colorsflt.copy() clr_float[:,3] = self.alpha if '_hillshade' in self.idx: clr_float[1,3] = 0. if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_pal(self.array, clr_float, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), -1.) elif self.nbnotnull > 0: wolfogl.addmeall_pal(self.array, clr_float, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), -1.) elif VERSION_RGB == 3: if self.wolftype == WOLF_ARRAY_FULL_INTEGER8: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_int8_pal_mask(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), self.array.mask) elif self.nbnotnull > 0: wolfogl.addmeall_int8_pal_mask(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), self.array.mask) elif self.wolftype == WOLF_ARRAY_FULL_UINTEGER8: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_uint8_pal_mask(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), self.array.mask) elif self.nbnotnull > 0: wolfogl.addmeall_uint8_pal_mask(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), self.array.mask) elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_int16_pal_mask(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), self.array.mask) elif self.nbnotnull > 0: wolfogl.addmeall_int16_pal_mask(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), self.array.mask) elif self.wolftype == WOLF_ARRAY_FULL_INTEGER: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_int_pal_mask(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), self.array.mask) elif self.nbnotnull > 0: wolfogl.addmeall_int_pal_mask(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), self.array.mask) elif self.wolftype == WOLF_ARRAY_FULL_DOUBLE: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_double_pal_mask(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), self.array.mask) elif self.nbnotnull > 0: wolfogl.addmeall_double_pal_mask(self.array, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), self.array.mask) elif self.wolftype not in [WOLF_ARRAY_FULL_SINGLE, WOLF_ARRAY_HILLSHAPE]: if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_pal_mask(self._tmp_float32, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), -1., self.array.mask) elif self.nbnotnull > 0: wolfogl.addmeall_pal_mask(self._tmp_float32, self.mypal.colorsflt, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), -1., self.array.mask) else: clr_float = self.mypal.colorsflt.copy() clr_float[:,3] = self.alpha if '_hillshade' in self.idx: clr_float[1,3] = 0. if self.nbnotnull != self.nbx * self.nby: if self.nbnotnull > 0: wolfogl.addme_pal_mask(self.array, clr_float, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), -1., self.array.mask) elif self.nbnotnull > 0: wolfogl.addmeall_pal_mask(self.array, clr_float, self.mypal.values, ox, oy, dx, dy, jstart, jend, istart, iend, cursize, self.nullvalue, self.alpha, int(self.mypal.interval_cst), -1., self.array.mask) except Exception as e: logging.error(repr(e)) raise NameError(_('OpenGL error in WolfArray.fillonecellgrid -- Please report this case with the data file and the context in which the error occured')) pass glEndList() except Exception as e: logging.error(repr(e)) raise NameError( 'Opengl in WolfArray_fillonecellgrid -- maybe a conflict with an existing opengl32.dll file - please rename the opengl32.dll in the libs directory and retry') curlist['done'][loci, locj] = 1
[docs] def suxsuy_contour(self, filename:str='', abs:bool=False, one_vec_if_ml:bool = True) -> tuple[list[int,int], list[int,int], vector | zone, bool]: """ The borders are computed on basis of the current *mask* :param filename: if provided, write 'sux', 'sux' and 'xy' files :param abs: add translation coordinates (Global World Coordinates) :return indicesX, indicesY, contourgen, interior indicesX : list of coupled indices along X - vertical border - 1-based like Fortran indicesY : list of coupled indices along Y - horizontal border - 1-based like Fortran contourgen : external contour interior : if False, contour is unique ; if True, interior contours exist -> interior parts are merged """ # Calcul des bords libres SUX, SUY indicesX=[] indicesY=[] locls=[] dx = self.dx dy = self.dy translx = self.origx transly = self.origy if abs: translx += self.translx transly += self.transly horiz = np.where(self.array.mask[0:self.nbx-1,0:self.nby-1] ^ self.array.mask[1:self.nbx,0:self.nby-1]) vert = np.where(self.array.mask[0:self.nbx-1,0:self.nby-1] ^ self.array.mask[0:self.nbx-1,1:self.nby]) for i,j in zip(horiz[0],horiz[1]): x1 = float(i+1) * dx + translx y1 = float(j+1) * dy + transly indicesX.append([i+2, j+1]) locls.append(LineString([[x1,y1-dy],[x1,y1]])) for i,j in zip(vert[0],vert[1]): x1 = float(i+1) * dx + translx y1 = float(j+1) * dy + transly indicesY.append([i+1, j+2]) locls.append(LineString([[x1-dx,y1],[x1,y1]])) if not locls: raise Exception(_("I can't detect any contour. Is this right ?")) interior=False # generate contour from partial linestring --> using Shapely to do that ! contour = linemerge(locls) if contour.geom_type == 'LineString': # All is fine - only one vector xy = np.asarray(contour.coords) nb = len(xy) contourgen = vector(name='external border') for x,y in xy: contourgen.add_vertex(wolfvertex(x,y)) elif contour.geom_type == 'MultiLineString': if one_vec_if_ml: interior=True # Multiple vectors --> combine # searching the longest LineString -> external contour contour:MultiLineString lenghts=[mygeom.length for mygeom in contour.geoms] ind = np.argmax(lenghts) xyall=[np.column_stack([np.asarray(mygeom.coords),np.zeros(len(mygeom.coords))]) for mygeom in contour.geoms] # coordinates of the longest LineString xy = xyall[ind] for i in range(len(xyall)): if i!=ind: # Concatenate local LineString to the external contour + 2 connection segments # Z coordinate is set to 1. -> will be used to check it after and change "in_use" property xy=np.concatenate([xy, np.asarray([xyall[i][0,0],xyall[i][0,1],1.]).reshape([1,3]), xyall[i][1:], np.asarray([xy[0,0],xy[0,1],1.]).reshape([1,3])]) nb = len(xy) contourgen = vector(name='external border') for x,y,z in xy: contourgen.add_vertex(wolfvertex(x,y,z)) contourgen.myvertices[-1].in_use = z == 0. # the new vertex is related to a connection segment --> ignore for numerical precision in intersection operations/calculations else: contourgen = zone(name = 'contour') for cur_ls in contour.geoms: xy = np.asarray(cur_ls.coords) nb = len(xy) cur_vec = vector(name='external border') for x,y in xy: cur_vec.add_vertex(wolfvertex(x,y)) contourgen.add_vector(cur_vec, forceparent=True) else: contourgen = None err = _(f"Unsupported Shapely contour result: {contour.geom_type}") logging.warning(err) if filename != '': # There is some knowledge about SUX, SUY, XY files there: # https://gitlab.uliege.be/HECE/wolf-interface/-/blob/master/InterfaceVB6/FrmAffichage.frm with open(filename+'.sux','w') as f: np.savetxt(f,np.asarray(indicesX), delimiter=',', fmt='%u,%u') with open(filename + '.suy', 'w') as f: np.savetxt(f, np.asarray(indicesY), delimiter=',', fmt='%u,%u') with open(filename + '.xy', 'w') as f: f.write('{}\n'.format(nb)) # FIXME Stef commented that. Maybe wrong !!! # xy[:,0]-=translx-self.origx # xy[:,1]-=transly-self.origy np.savetxt(f, xy[:,:2], delimiter='\t') return indicesX,indicesY,contourgen,interior
[docs] def imshow(self, figax:tuple[Figure, Axis] = None, cmap:Colormap = None, step_ticks=100.) -> tuple[Figure, Axis]: """ Create Matplotlib image from WolfArray """ # Use figax if passed as argument if figax is None: fig,ax = plt.subplots(1,1) else: fig,ax = figax bounds = self.get_bounds() if cmap is None: # update local colors if not already done if self[i].rgb is None: self[i].updatepalette(0) # Pointing RGB colors = self[i].rgb colors[self.array.mask,3] = 0. # Plot colors = colors.swapaxes(0,1) ax.imshow(colors, origin='lower') else: # Full scale image values vals = self.array.data alpha = np.zeros(vals.shape) alpha[~ self.array.mask] = 1. # Plot vals = vals.swapaxes(0,1) alpha = alpha.swapaxes(0,1) ax.imshow(vals, origin='lower', cmap=cmap, alpha=alpha) ax.set_aspect('equal') x_start = (bounds[0][0] // step_ticks) * step_ticks x_end = (bounds[0][1] // step_ticks) * step_ticks y_start = (bounds[1][0] // step_ticks) * step_ticks y_end = (bounds[1][1] // step_ticks) * step_ticks x_pos = np.arange(x_start, x_end+.0001, step_ticks) y_pos = np.arange(y_start, y_end+.0001, step_ticks) i = [self.get_ij_from_xy(x, 0.)[0] for x in x_pos] j = [self.get_ij_from_xy(0., y)[1] for y in y_pos] ax.set_xticks(i) ax.set_xticklabels(x_pos, rotation = 30) ax.set_yticks(j) ax.set_yticklabels(y_pos) return fig,ax
[docs] def set_array_from_numpy(self, array:np.ndarray, nullvalue:float = None): """ Set array from numpy array """ if array.shape != (self.nbx, self.nby): logging.warning(f"Array shape {array.shape} is not compatible with WolfArray shape {self.nbx, self.nby}") return def wolftype_from_npz(curarray:np.ndarray): if curarray.dtype == np.float64: return WOLF_ARRAY_FULL_DOUBLE elif curarray.dtype == np.float32: return WOLF_ARRAY_FULL_SINGLE elif curarray.dtype == np.int32: return WOLF_ARRAY_FULL_INTEGER elif curarray.dtype == np.int8: return WOLF_ARRAY_FULL_INTEGER8 elif curarray.dtype == np.uint8: return WOLF_ARRAY_FULL_UINTEGER8 self.array = np.ma.array(array.copy()) self.wolftype = wolftype_from_npz(array) if nullvalue is not None: self.nullvalue = nullvalue self.mask_data(self.nullvalue) self.reset_plot()
[docs] def nullify_border(self, width:int = 1): """ Set border to nullvalue """ self.array.data[:width,:] = self.nullvalue self.array.data[-width:,:] = self.nullvalue self.array.data[:,:width] = self.nullvalue self.array.data[:,-width:] = self.nullvalue self.array.mask[:width,:] = True self.array.mask[-width:,:] = True self.array.mask[:,:width] = True self.array.mask[:,-width:] = True
[docs] def as_WolfArray(self, abs:bool=True) -> "WolfArray": """ Return a WolfArray object from this WolfArray """ NewArray = WolfArray(mold=self) if abs: NewArray.origx += self.translx NewArray.origy += self.transly NewArray.translx = 0. NewArray.transly = 0. return NewArray
[docs] def get_unique_values(self): """ Return unique values in the array """ unique = np.ma.unique(self.array) while unique[-1] is np.ma.masked and len(unique) > 1: unique = unique[:-1] return unique
[docs] def map_values(self, keys_vals:dict, default:float=None): """ Mapping array values to new values defined by a dictionnary. First, check if all values are in keys_vals. If not, set to default. If default is None, set to nullvalue. :param keys_vals: dictionary of values to map :param default: default value if key not found """ vals = self.get_unique_values() def_keys = [] for val in vals: if val not in keys_vals: logging.warning(_(f"Value {val} not in keys_vals -- Will be set to default or NullValue")) def_keys.append(val) continue for key, val in keys_vals.items(): self.array.data[self.array.data == key] = val if default is None: default = self.nullvalue for key in def_keys: self.array.data[self.array.data == key] = default self.mask_data(self.nullvalue) self.reset_plot()
@classmethod
[docs] def from_other_epsg_coo(cls, input_raster_path:str, input_srs='EPSG:3812', output_srs='EPSG:31370', resampling_method=gdal.GRA_Bilinear, xRes:float=0.5, yRes:float=0.5): """ Reprojects and resamples a raster file from an other EPSG coordinates and return it as a WolfArray. :param input_raster_path: The path to the input raster file. :type input_raster_path: str :param input_srs: The input spatial reference system (SRS) in the format 'EPSG:XXXX'. Defaults to Lambert 2008 'EPSG:3812'. :type input_srs: str :param output_srs: The output spatial reference system (SRS) in the format 'EPSG:XXXX'. Defaults to Belgian Lambert 72 'EPSG:31370'. :type output_srs: str :param resampling_method: The resampling method to use. Defaults to gdal.GRA_Bilinear. Resampling method can be chosen among the gdal GRA_* constants (gdal.GRA_Average; gdal.GRA_Bilinear; gdal.GRA_Cubic; gdal.GRA_CubicSpline; gdal.GRA_Lanczos; gdal.GRA_Mode; gdal.GRA_NearestNeighbour) :type resampling_method: int :param xRes: The desired output resolution in the x direction. Defaults to 0.5. :type xRes (float): float :param yRes: The desired output resolution in the y direction. Defaults to 0.5. :type yRes (float): float :raises AssertionError: If the input or output raster file is not a GeoTIFF file. :raises RuntimeError: If the input raster file cannot be opened. :raises PermissionError: If there is a permission error while trying to delete the output raster file. :raises Exception: If an unexpected error occurs while trying to delete the output raster file. :raises RuntimeError: If the reprojection fails for the input raster file. :return: WolfArray """ #sanitize input input_raster_path = str(input_raster_path) input_srs = str(input_srs) output_srs = str(output_srs) assert resampling_method in [gdal.GRA_Average, gdal.GRA_Bilinear, gdal.GRA_Cubic, gdal.GRA_CubicSpline, gdal.GRA_Lanczos, gdal.GRA_Mode, gdal.GRA_NearestNeighbour], "Invalid resampling method" # Define temporary files with tempfile.TemporaryDirectory() as temp_dir: output_raster_path = os.path.join(temp_dir, "Array_72.tif") reproject_and_resample_raster(input_raster_path, output_raster_path, input_srs, output_srs, resampling_method, xRes, yRes) Array3 = WolfArray(output_raster_path, nullvalue=-9999) return Array3
[docs] def contour(self, levels:Union[int, list[float]] = 10) -> Zones: """ Compute contour lines """ if isinstance(levels, int): levels = np.linspace(self.array.min(), self.array.max(), levels) x, y = self.meshgrid() cs = plt.contour(x, y, self.array, levels=levels) zones = Zones(idx = self.idx + '_contour', mapviewer = self.get_mapviewer()) for collection, level in zip(cs.collections, cs.levels): zone_level = zone(name=f'Contour {level}') for idx, path in enumerate(collection.get_paths()): vector_level = vector(name=f'Contour {level} - {idx}') for vertices in path.to_polygons(closed_only=False): for vertex in vertices: vector_level.add_vertex(wolfvertex(vertex[0], vertex[1])) zone_level.add_vector(vector_level, forceparent=True) zones.add_zone(zone_level, forceparent=True) return zones
[docs] class WolfArrayMB(WolfArray): """ Matrice multiblocks Les blocs (objets WolfArray) sont stockés dans un dictionnaire "myblocks" """ # Each block is denoted by a block key (see function `getkeyblock`).
[docs] myblocks: dict[str, WolfArray]
def __init__(self, fname=None, mold=None, masknull=True, crop=None, whichtype=WOLF_ARRAY_MB_SINGLE, preload=True, create=False, mapviewer=None, nullvalue=0, srcheader=None): super().__init__(fname, mold, masknull, crop, whichtype, preload, create, mapviewer, nullvalue, srcheader) self.mngselection = SelectionDataMB(self) self._active_blocks = 0 if self.myblocks is None: self.myblocks = {}
[docs] def extract_selection(self): """ Extract the current selection """ newarrays = [] for curblock in self.myblocks.values(): newblock = curblock.SelectionData.get_newarray() if newblock is not None: newarrays.append(newblock) if len(newarrays) == 0: logging.warning(_('No selection to extract')) return None newMBarray = WolfArrayMB() for newarray in newarrays: newMBarray.add_block(newarray, force_idx=True) mapviewer = self.get_mapviewer() if mapviewer is not None: mapviewer.add_object('array', newobj = newarray, ToCheck = True, id = self.idx + '_extracted')
@property
[docs] def nullvalue(self) -> float: """ Return the null value """ return self._nullvalue
@nullvalue.setter def nullvalue(self, value:float): """ Set the null value """ self._nullvalue = value if self.myblocks is not None: for curblock in self.myblocks.values(): curblock.nullvalue = value
[docs] def add_ops_sel(self): """ Add operations and selection manager to all blocks """ super().add_ops_sel() if self.myblocks is None: self.myblocks = {} for curblock in self.myblocks.values(): curblock.add_ops_sel()
[docs] def filter_zone(self, set_null:bool = False): """ Filtre des zones et conservation de celles pour lesquelles des mailles sont sélectionnées """ for curblock in self.myblocks.values(): curblock.filter_zone(set_null, reset_plot=False) self.reset_plot()
[docs] def labelling(self): """ Labelling of the array using Scipy """ for curblock in self.myblocks.values(): curblock.labelling(reset_plot=False) self.reset_plot()
[docs] def interpolate_on_polygon(self, working_vector: vector, method:Literal["nearest", "linear", "cubic"]="linear"): """ Interpolation sous un polygone L'interpolation a lieu : - uniquement dans les mailles sélectionnées si elles existent - dans les mailles contenues dans le polygone sinon On utilise ensuite "griddata" pour interpoler les altitudes des mailles depuis les vertices 3D du polygone """ for curblock in self.myblocks.values(): curblock.interpolate_on_polygon(working_vector, method)
[docs] def interpolate_on_polygons(self, working_zone: zone, method:Literal["nearest", "linear", "cubic"]="linear"): for curvector in working_zone.myvectors: self.interpolate_on_polygon(curvector, method)
[docs] def interpolate_on_polyline(self, working_vector:vector, usemask=True): """ Interpolation sous une polyligne L'interpolation a lieu : - uniquement dans les mailles sélectionnées si elles existent - dans les mailles sous la polyligne sinon On utilise ensuite "interpolate" de shapely pour interpoler les altitudes des mailles depuis les vertices 3D de la polyligne """ for curblock in self.myblocks.values(): curblock.interpolate_on_polyline(working_vector, usemask)
[docs] def interpolate_on_polylines(self, working_zone:zone, usemask=True): """ Interpolation sous les polylignes d'une même zone """ for curvec in working_zone.myvectors: self.interpolate_on_polyline(curvec, usemask)
[docs] def check_bounds_ij(self, i:int, j:int): """Check if i and j are inside the array bounds""" x,y = self.get_xy_from_ij(i,j) return self.check_bounds_xy(x,y)
[docs] def check_bounds_xy(self, x:float, y:float): """Check if i and j are inside the array bounds""" xmin, xmax, ymin, ymax = self.get_bounds() return x>=xmin and x<=xmax and y>=ymin and y<=ymax
def __getitem__(self, block_key:Union[int,str]) -> WolfArray: """Access a block of this multi-blocks array.""" if isinstance(block_key,int): _key = getkeyblock(block_key) else: _key = block_key if _key in self.myblocks.keys(): return self.myblocks[_key] else: return None
[docs] def add_block(self, arr: WolfArray, force_idx:bool=False, copyarray=False): """ Adds a properly configured block this multiblock. :param arr: The block to add. :param force_idx: If True, the index/key will be set on `arr`. If False, the index/key must already be set on `arr`. """ if copyarray: arr = WolfArray(mold=arr, nullvalue=arr.nullvalue) force_idx = True if force_idx: arr.idx = getkeyblock(len(self.myblocks)) else: assert arr.idx is not None and type(arr.idx) == str and arr.idx.strip() != '', f"The block index/key is wrong {arr.idx}" assert arr.idx not in self.myblocks, "You can't have the same block twice" pos = len(self.myblocks) posidx = decodekeyblock(arr.idx, False) assert pos == posidx, f"The block index/key is wrong {arr.idx}" self.myblocks[arr.idx] = arr arr.isblock = True arr.blockindex = len(self.myblocks) - 1
[docs] def share_palette(self): """Partage de la palette de couleurs entre matrices liées""" for cur in self.linkedarrays: if id(cur.mypal)!= id(self.mypal): cur.mypal = self.mypal cur.link_palette()
[docs] def copy_mask(self, source:"WolfArrayMB", forcenullvalue:bool= False): """ Copy the mask of two arrays """ if isinstance(self, type(source)): if self.check_consistency(source): i=0 for curblock, curblockother in zip(self.myblocks.values(),source.myblocks.values()): curblock.copy_mask(curblockother, forcenullvalue) i+=1 self.reset_plot() else: logging.warning(_('Copy mask not supported between different types of arrays'))
[docs] def count(self): """ Count the number of not null cells """ self.nbnotnull = 0 for i in range(self.nb_blocks): curblock = self.myblocks[getkeyblock(i)] curarray = curblock.array nbnotnull = curarray.count() curblock.nbnotnull = nbnotnull self.nbnotnull += nbnotnull
[docs] def check_plot(self): """ Check plot and apply to each block """ self.plotted = True self.mimic_plotdata() if not self.loaded and self.filename != '': if os.path.exists(self.filename): self.read_data() if self.masknull: self.mask_data(self.nullvalue) if VERSION_RGB==1 : if self.rgb is None: self.rgb = np.ones((self.nbx, self.nby, 4), order='F', dtype=np.integer) self.updatepalette(0) self.loaded = True else: raise Exception(_(f"Trying to load an array that doesn't exist ({self.filename})")) else: logging.info(_('Array already loaded'))
[docs] def uncheck_plot(self, unload:bool=True, forceresetOGL:bool=False, askquestion:bool=True): """ Uncheck plot and apply to each block """ self.plotted = False self.mimic_plotdata() if unload and self.filename != '': if askquestion and not forceresetOGL: if self.wx_exists: dlg = wx.MessageDialog(None, _('Do you want to reset OpenGL lists?'), style=wx.YES_NO) ret = dlg.ShowModal() if ret == wx.ID_YES: forceresetOGL = True else: forceresetOGL = True for curblock in self.myblocks.values(): curblock.uncheck_plot(unload, forceresetOGL, askquestion=False) if VERSION_RGB==1 : self.rgb = None self.myblocks = {} self.loaded = False else: logging.info(_('Array not unloaded'))
[docs] def mask_data(self, value): """ Mask cells where values are equal to `value`""" if self.wolftype in [WOLF_ARRAY_FULL_INTEGER, WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]: value=int(value) if value is not None: for curblock in self.myblocks.values(): curarray = curblock.array if isinstance(curarray.mask, np.bool_): # mask is not an array, but a single boolean value # we must create a new mask array if np.isnan(value) or math.isnan(value): curarray.mask = np.isnan(curarray.data) else: curarray.mask = curarray.data == value else: # Copy to prevent unlinking the mask (see `mask_reset`) if np.isnan(value) or math.isnan(value): np.copyto(curarray.mask, np.isnan(curarray.data)) else: np.copyto(curarray.mask, curarray.data == value) self.count()
# for i in range(self.nb_blocks): # curblock = self.myblocks[getkeyblock(i)] # curarray = curblock.array # curarray.mask = curarray.data == value # self.count()
[docs] def mask_union(self, source:"WolfArrayMB"): """ Union of the masks of two arrays Applying for each block iteratively. """ if isinstance(self, type(source)): if self.check_consistency(source): i=0 for curblock, curblockother in zip(self.myblocks.values(),source.myblocks.values()): curblock.mask_union(curblockother) i+=1 self.reset_plot()
[docs] def read_data(self): """ Lecture du tableau en binaire """ with open(self.filename, 'rb') as f: for i in range(self.nb_blocks): if self.wolftype == WOLF_ARRAY_MB_SINGLE: curblock = WolfArray(whichtype=WOLF_ARRAY_FULL_SINGLE, srcheader=self.head_blocks[getkeyblock(i)]) elif self.wolftype == WOLF_ARRAY_MB_INTEGER: curblock = WolfArray(whichtype=WOLF_ARRAY_FULL_INTEGER) curblock.isblock = True curblock.blockindex = i curblock.idx = getkeyblock(i) curblock._read_binary_data(f) self.myblocks[getkeyblock(i)] = curblock
[docs] def write_array(self): """ Ecriture du tableau en binaire """ with open(self.filename, 'wb') as f: for i in range(self.nb_blocks): curarray = self.myblocks[getkeyblock(i)] f.write(curarray.array.data.transpose().tobytes())
[docs] def get_ij_from_xy(self, x:float, y:float, z:float=0., scale:float=1., aswolf:bool=False, abs:bool=True, which_block:int=1): """ alias for get_ij_from_xy for the block `which_block :param x: x coordinate :param y: y coordinate :param z: z coordinate :param scale: scale factor :param aswolf: if True, then the indices are 1-based like Fortran, otherwise 0-based like Python :param abs: if True, then the translation is taken into account :param which_block: block index 1-based """ return self.myblocks[getkeyblock(which_block, False)].get_ij_from_xy(x, y, z, scale, aswolf, abs)
[docs] def get_values_as_wolf(self, i:int, j:int, which_block:int=1): """ Return the value at indices (i,j) of the block `which_block. :param i: i index :param j: j index :param which_block: block index 1-based """ h = np.NaN if which_block == 0: logging.warning("Block index is probably 0-based. It should be 1-based.") return h keyblock = getkeyblock(which_block, False) curblock = self.myblocks[keyblock] nbx = curblock.nbx nby = curblock.nby if (i > 0 and i <= nbx and j > 0 and j <= nby): h = curblock.array[i - 1, j - 1] return h
[docs] def get_value(self, x:float, y:float, abs:bool=True): """ Read the value at world coordinate (x,y). if `abs` is given, then the translation is is taken into account. If no block covers the coordinate, then np.NaN is returned If several blocks cover the given coordinate then the first match is returned (and thus, the others are ignored). :param x: x coordinate :param y: y coordinate :param abs: if True, then the translation is taken into account :return: the value at (x,y) or np.NaN if no block covers the coordinate """ h = np.NaN for curblock in self.myblocks.values(): curblock: WolfArray nbx = curblock.nbx nby = curblock.nby i, j = curblock.get_ij_from_xy(x, y, abs=abs) if (i > 0 and i <= nbx and j > 0 and j <= nby): h = curblock.array[i, j] if not curblock.array.mask[i, j]: break return h
[docs] def get_xy_from_ij(self, i:int, j:int, which_block:int, aswolf:bool=False, abs:bool=True): """ Return the world coordinates (x,y) of the indices (i,j) of the block `which_block. :param i: i index -- 1-based like Fortran or 0-based like Python, see 'aswolf' parameter :param j: j index -- 1-based like Fortran or 0-based like Python, see 'aswolf' parameter :param which_block: block index 1-based :param aswolf: if True, (i,j) are 1-based like Fortran, otherwise 0-based like Python :param abs: if True, then the translation is taken into account """ if which_block == 0: logging.warning("Block index is probably 0-based. It should be 1-based.") return k = getkeyblock(which_block, False) assert k in self.myblocks, f"The block '{k}' you ask for doesn't exist." x, y = self.myblocks[k].get_xy_from_ij(i, j, aswolf=aswolf, abs=abs) return x, y
[docs] def get_blockij_from_xy(self, x:float, y:float, abs:bool=True): """ Return the block indices (i,j) of the block covering the world coordinate (x,y) :param x: x coordinate :param y: y coordinate :param abs: if True, then the translation is taken into account :return: the block indices (i,j,[k]) or (-1,-1,-1) if no block covers the coordinate """ exists = False k = 1 for curblock in self.myblocks.values(): curblock: WolfArray nbx = curblock.nbx nby = curblock.nby i, j = curblock.get_ij_from_xy(x, y, abs=abs) if (i > 0 and i <= nbx and j > 0 and j <= nby): if not curblock.array.mask[i, j]: exists = True break k += 1 if exists: return i, j, k else: return -1, -1, -1
[docs] def updatepalette(self, which:int=0, onzoom:list[float]=[]): """ Update the palette/colormap of the array :param which: which colormap to use :param onzoom: if not empty, then only the values within the zoom are used to update the palette -- [xmin,xmax,ymin,ymax] """ if len(self.myblocks) == 0: return if self.mypal.automatic: if onzoom != []: allarrays = [] for curblock in self.myblocks.values(): istart, jstart = curblock.get_ij_from_xy(onzoom[0], onzoom[2]) iend, jend = curblock.get_ij_from_xy(onzoom[1], onzoom[3]) istart = 0 if istart < 0 else istart jstart = 0 if jstart < 0 else jstart iend = curblock.nbx if iend > curblock.nbx else iend jend = curblock.nby if jend > curblock.nby else jend partarray = curblock.array[istart:iend, jstart:jend] partarray = partarray[partarray.mask == False] if len(partarray) > 0: allarrays.append(partarray.flatten()) allarrays = np.concatenate(allarrays) self.mypal.isopop(allarrays, allarrays.count()) else: allarrays = np.concatenate( [curblock.array[curblock.array.mask == False].flatten() for curblock in self.myblocks.values()]) self.mypal.isopop(allarrays, self.nbnotnull) self.link_palette() if VERSION_RGB ==1: for curblock in self.myblocks.values(): curblock.rgb = self.mypal.get_rgba(curblock.array) if self.myops is not None: self.myops.update_palette()
[docs] def delete_lists(self): """ Delete OpenGL lists """ for curblock in self.myblocks.values(): curblock.delete_lists()
[docs] def mimic_plotdata(self): """ Copy plot flags to children """ for curblock in self.myblocks.values(): curblock: WolfArray curblock.plotted = self.plotted curblock.plotting = self.plotting
[docs] def plot(self, sx=None, sy=None, xmin=None, ymin=None, xmax=None, ymax=None, size = None): """ Plot the array """ self.plotting = True self.mimic_plotdata() for curblock in self.myblocks.values(): curblock.plot(sx, sy, xmin, ymin, xmax, ymax) self.plotting = False self.mimic_plotdata() # Plot selected nodes if self.SelectionData is not None: self.SelectionData.plot_selection() # Plot zones attached to array if self.myops is not None: self.myops.myzones.plot()
[docs] def fillonecellgrid(self, curscale, loci, locj, force=False): for curblock in self.myblocks.values(): curblock.fillonecellgrid(curscale, loci, locj, force)
[docs] def check_consistency(self, other): """ Vérifie la cohérence entre deux matrices """ test = isinstance(self, type(other)) if test: for curblock, curblockother in zip(self.myblocks.values(),other.myblocks.values()): curblock:WolfArray curblockother:WolfArray test &= curblock.get_header().is_like(curblockother.get_header()) return test
def __add__(self, other): """Surcharge de l'opérateur d'addition""" newArray = WolfArrayMB() newArray.set_header(self.get_header()) if isinstance(self, type(other)): if self.check_consistency(other): i=0 for curblock, curblockother in zip(self.myblocks.values(),other.myblocks.values()): newblock = curblock+curblockother newblock.isblock = True newblock.blockindex = i newArray.myblocks[getkeyblock(i)] = newblock i+=1 else: return None elif isinstance(other, float): if other != 0.: i=0 for curblock in self.myblocks.values(): newblock = curblock+other newblock.isblock = True newblock.blockindex = i newArray.myblocks[getkeyblock(i)] = newblock i+=1 else: return self return newArray def __mul__(self, other): """Surcharge de l'opérateur d'addition""" newArray = WolfArrayMB() newArray.set_header(self.get_header()) if isinstance(self, type(other)): if self.check_consistency(other): i=0 for curblock, curblockother in zip(self.myblocks.values(),other.myblocks.values()): newblock = curblock*curblockother newblock.isblock = True newblock.blockindex = i newArray.myblocks[getkeyblock(i)] = newblock i+=1 else: return None elif isinstance(other, float): if other != 0.: i=0 for curblock in self.myblocks.values(): newblock = curblock*other newblock.isblock = True newblock.blockindex = i newArray.myblocks[getkeyblock(i)] = newblock i+=1 else: return self return newArray def __sub__(self, other): """Surcharge de l'opérateur de soustraction""" newArray = WolfArrayMB() newArray.set_header(self.get_header()) if isinstance(self, type(other)): if self.check_consistency(other): i=0 for curblock, curblockother in zip(self.myblocks.values(),other.myblocks.values()): newblock = curblock-curblockother newblock.isblock = True newblock.blockindex = i newArray.myblocks[getkeyblock(i)] = newblock i+=1 else: return None elif isinstance(other, float): if other != 0.: i=0 for curblock in self.myblocks.values(): newblock = curblock-other newblock.isblock = True newblock.blockindex = i newArray.myblocks[getkeyblock(i)] = newblock i+=1 else: return self return newArray def __pow__(self, other): """Surcharge de l'opérateur puissance""" newArray = WolfArrayMB() newArray.set_header(self.get_header()) if isinstance(self, type(other)): if self.check_consistency(other): i=0 for curblock, curblockother in zip(self.myblocks.values(),other.myblocks.values()): newblock = curblock**curblockother newblock.isblock = True newblock.blockindex = i newArray.myblocks[getkeyblock(i)] = newblock i+=1 else: return None elif isinstance(other, float): if other != 0.: i=0 for curblock in self.myblocks.values(): newblock = curblock**other newblock.isblock = True newblock.blockindex = i newArray.myblocks[getkeyblock(i)] = newblock i+=1 else: return self return newArray def __truediv__(self, other): """Surcharge de l'opérateur division""" newArray = WolfArrayMB() newArray.set_header(self.get_header()) if isinstance(self, type(other)): if self.check_consistency(other): i=0 for curblock, curblockother in zip(self.myblocks.values(),other.myblocks.values()): newblock = curblock/curblockother newblock.isblock = True newblock.blockindex = i newArray.myblocks[getkeyblock(i)] = newblock i+=1 else: return None elif isinstance(other, float): if other != 0.: i=0 for curblock in self.myblocks.values(): newblock = curblock/other newblock.isblock = True newblock.blockindex = i newArray.myblocks[getkeyblock(i)] = newblock i+=1 else: return self return newArray
[docs] def reset(self): """ Reset each block""" for i in range(self.nb_blocks): self[i].reset()
[docs] def mask_reset(self): """ Reset mask -- mask = False everywhere """ for i in range(self.nb_blocks): self[i].mask_reset()
[docs] def mask_lower(self, value): """ Mask cell where values are strictly lower than `value` """ for i in range(self.nb_blocks): self[i].mask_lower(value) self.count()
[docs] def imshow(self, figax:tuple[Figure, Axis] = None, cmap:Colormap = None, step_ticks=100.) -> tuple[Figure, Axis]: """ Create Matplotlib image from MultiBlock array """ # Use figax if passed as argument if figax is None: fig,ax = plt.subplots(1,1) else: fig,ax = figax # Find minimal spatial resolution dx = sorted([self[i].dx for i in range(self.nb_blocks)]) dx_min = dx[0] bounds = self.get_bounds() # Set local WolfHeader _header = self.get_header() _header.dx = dx_min _header.dy = dx_min _header.nbx = int((bounds[0][1]-bounds[0][0])/dx_min) _header.nby = int((bounds[1][1]-bounds[1][0])/dx_min) if cmap is None: # Full scale image color colors = np.zeros((_header.nbx, _header.nby,4)) # Iterate on blocks for i in range(self.nb_blocks): # update local colors if not already done if self[i].rgb is None: self[i].updatepalette(0) # Pointing RGB _colors = self[i].rgb if self[i].dx > dx_min: n = int(self[i].dx / dx_min) tmpcolors = np.zeros((_colors.shape[0]*n, _colors.shape[1]*n, _colors.shape[2])) for i in range(n): for j in range(n): tmpcolors[i::n,j::n,:] = _colors _colors = tmpcolors # Searching relative position x,y = self[i].get_xy_from_ij(0,0) loci,locj = _header.get_ij_from_xy(x,y) # Alias subarray in colors sub = colors[loci:loci+_colors.shape[0], locj:locj+_colors.shape[1],:] # Copy color if not masked values sub[~ self[i].array.mask,:] = _colors[~ self[i].array.mask,:] # Plot colors = colors.swapaxes(0,1) ax.imshow(colors, origin='lower') else: # Full scale image values vals = np.zeros((_header.nbx, _header.nby)) alpha = np.zeros(vals.shape) # Iterate on blocks for i in range(self.nb_blocks): # Pointing values _vals = self[i].array.data if self[i].dx > dx_min: n = int(self[i].dx / dx_min) tmpvals = np.zeros((_vals.shape[0]*n, _vals.shape[1]*n)) for i in range(n): for j in range(n): tmpvals[i::n,j::n,:] = _vals _vals = tmpvals # Searching relative position x,y = self[i].get_xy_from_ij(0,0) loci,locj = _header.get_ij_from_xy(x,y) # Alias subarray in values sub = vals[loci:loci+_vals.shape[0], locj:locj+_vals.shape[1]] # Copy values if not masked sub[~ self[i].array.mask] = _vals[~ self[i].array.mask] sub = alpha[loci:loci+_vals.shape[0], locj:locj+_vals.shape[1]] sub[~ self[i].array.mask] = 1. # Plot vals = vals.swapaxes(0,1) alpha = alpha.swapaxes(0,1) ax.imshow(vals, origin='lower', cmap=cmap, alpha=alpha) ax.set_aspect('equal') x_start = (bounds[0][0] // step_ticks) * step_ticks x_end = (bounds[0][1] // step_ticks) * step_ticks y_start = (bounds[1][0] // step_ticks) * step_ticks y_end = (bounds[1][1] // step_ticks) * step_ticks x_pos = np.arange(x_start, x_end+.0001, step_ticks) y_pos = np.arange(y_start, y_end+.0001, step_ticks) i = [self.get_ij_from_xy(x, 0.)[0] for x in x_pos] j = [self.get_ij_from_xy(0., y)[1] for y in y_pos] ax.set_xticks(i) ax.set_xticklabels(x_pos, rotation = 30) ax.set_yticks(j) ax.set_yticklabels(y_pos) return fig,ax
[docs] def allocate_ressources(self): """ Allocate memory ressources """ if self.myblocks is None: logging.warning("No blocks to allocate") else: if len(self.myblocks)==0: for id, (key, curhead) in enumerate(self.head_blocks.items()): if self.wolftype == WOLF_ARRAY_MB_SINGLE: self.myblocks[key] = WolfArray(srcheader=curhead, whichtype=WOLF_ARRAY_FULL_SINGLE) elif self.wolftype == WOLF_ARRAY_MB_INTEGER: self.myblocks[key] = WolfArray(srcheader=curhead, whichtype=WOLF_ARRAY_FULL_INTEGER) self.myblocks[key].isblock = True self.myblocks[key].blockindex = id self.myblocks[key].idx = key
[docs] def set_header_from_added_blocks(self): """ Set header from blocks """ if len(self.myblocks) > 0: origx = min([curblock.origx + curblock.translx for curblock in self.myblocks.values()]) origy = min([curblock.origy + curblock.transly for curblock in self.myblocks.values()]) endx = max([curblock.origx + curblock.translx + curblock.nbx*curblock.dx for curblock in self.myblocks.values()]) endy = max([curblock.origy + curblock.transly + curblock.nby*curblock.dy for curblock in self.myblocks.values()]) self.dx = endx - origx self.dy = endy - origy self.nbx = 1 self.nby = 1 self.origx = origx self.origy = origy self.translx = 0. self.transly = 0.
[docs] def as_WolfArray(self, abs:bool=True, forced_header:header_wolf = None) -> WolfArray: """ Convert to WolfArray Rebin blocks if necessary """ newArray = WolfArray() if forced_header is None: myhead = self.get_header(abs=abs) else: myhead = forced_header myhead.wolftype = self.wolftype dx = set([curblock.get_header().dx for curblock in iter(self.myblocks.values())]) dy = set([curblock.get_header().dy for curblock in iter(self.myblocks.values())]) if len(dx) == 1 and len(dy) == 1: # only one resolution newArray.dx = list(dx)[0] newArray.dy = list(dy)[0] newArray.origx = myhead.origx newArray.origy = myhead.origy newArray.nbx = int((myhead.nbx*myhead.dx)//newArray.dx) newArray.nby = int((myhead.nby*myhead.dy)//newArray.dy) newArray.translx = myhead.translx newArray.transly = myhead.transly newArray.wolftype = WOLF_ARRAY_FULL_SINGLE if myhead.wolftype == WOLF_ARRAY_MB_SINGLE else WOLF_ARRAY_FULL_INTEGER newArray.allocate_ressources() newArray.array[:,:] = 0 for curblock in self.myblocks.values(): ij = np.where(~curblock.array.mask) if len(ij[0]) > 0: if len(ij[0])>0: i = ij[0] j = ij[1] x0, y0 = curblock.get_xy_from_ij(0,0, abs=True) i0, j0 = newArray.get_ij_from_xy(x0, y0, abs=True) i_dest = i + i0 j_dest = j + j0 newArray.array[i_dest,j_dest] = curblock.array[i,j] newArray.array.mask[i_dest,j_dest] = False else: logging.debug(f"Block {curblock.idx} is empty or totally masked.") else: logging.debug(f"Block {curblock.idx} is empty or totally masked.") else: # multiple resolutions dx = list(dx) dy = list(dy) dx.sort() dy.sort() newArray.dx = dx[0] newArray.dy = dy[0] newArray.origx = myhead.origx newArray.origy = myhead.origy newArray.nbx = int((myhead.nbx*myhead.dx)//newArray.dx) newArray.nby = int((myhead.nby*myhead.dy)//newArray.dy) newArray.translx = myhead.translx newArray.transly = myhead.transly newArray.wolftype = WOLF_ARRAY_FULL_SINGLE if myhead.wolftype == WOLF_ARRAY_MB_SINGLE else WOLF_ARRAY_FULL_INTEGER newArray.allocate_ressources() newArray.array[:,:] = 0 for curblock in self.myblocks.values(): if curblock.dx == dx[0] and curblock.dy == dy[0]: # same resolution blockArray = curblock else: # rebin factor = dx[0]/curblock.dx blockArray = WolfArray(mold=curblock) blockArray.rebin(factor) ij = np.where(~blockArray.array.mask) if len(ij[0]) > 0: if len(ij[0])>0: i = ij[0] j = ij[1] x0, y0 = blockArray.get_xy_from_ij(0,0, abs=True) i0, j0 = newArray.get_ij_from_xy(x0, y0, abs=True) i_dest = i + i0 j_dest = j + j0 newArray.array[i_dest,j_dest] = blockArray.array[i,j] newArray.array.mask[i_dest,j_dest] = False else: logging.debug(f"Block {curblock.idx} is empty or totally masked.") else: logging.debug(f"Block {curblock.idx} is empty or totally masked.") return newArray
[docs] class WolfArrayMNAP(WolfArrayMB): """ Matrice MNAP d'une modélisation WOLF2D Elle contient toutes les informations de maillage en Multi-blocks ainsi que les relations de voisinage de blocs. Surcharge de WolfArrayMB avec modification des opérations de lecture/écriture car le fichier est au format TEXTE/ASCII et d'une structure spécifique. """ # Each zone will have the contour of one block.
[docs] contour: Zones
def __init__(self, fname=None, mold=None, masknull=True, crop=None): super().__init__(fname, mold, masknull, crop)
[docs] def write_all(self): def padf(n): s = f"{n:.5f}" return f"{s:>12}" def padi(n): return f"{n:>15}" with open(self.filename,"w") as f: f.write(padi(self.nb_blocks) + "\n") for i in range(self.nb_blocks): curkey = getkeyblock(i) curarray: WolfArray = self.myblocks[curkey] f.write(padf(curarray.dx)+ padf(curarray.dy) + "\n") f.write(padf(curarray.origx + curarray.translx) + padf(curarray.origx + curarray.translx + curarray.dx*curarray.nbx) + "\n") f.write(padf(curarray.origy + curarray.transly) + padf(curarray.origy + curarray.transly + curarray.dy*curarray.nby) + "\n") f.write(padi(curarray.nbx) + padi(curarray.nby) + "\n") # FIXME curarray.array = np.flipud(np.ma.asarray(myarray, order='F')).transpose() mask = np.transpose(np.flipud(curarray.array.mask)) for y in range(curarray.nby): f.write("".join([f"{int(not curarray.array.mask[x,y]):>4}" for x in range(curarray.nbx)]) + "\n") vertices = self.contour.myzones[0].myvectors[0].myvertices f.write(padi(len(vertices)) + "\n") for v in vertices: v : wolfvertex f.write(padf(v.x) + padf(v.y) + "\n")
[docs] def read_data(self): # Vérification de l'existence de certains attributs if self.myblocks is None: self.myblocks = {} # une matrice WolfArrayMB n'a pas de contour -> ajout d'un attribut spécifique self.contour = Zones() if Path(self.filename + '.mnap').exists(): with open(self.filename + '.mnap') as f: # Lecture au format texte lines = f.read().splitlines() # nombre de blocks dans la première ligne nb_blocks = abs(int(lines[0])) decal = 1 for i in range(nb_blocks): # bouclage sur chque block curkey = getkeyblock(i) curarray = WolfArray(whichtype=WOLF_ARRAY_FULL_INTEGER8) self.myblocks[curkey] = curarray assert curarray.wolftype == WOLF_ARRAY_FULL_INTEGER8, "Type de block incorrect" curarray.isblock = True curarray.blockindex = i # Recherche des informations de maillage - dx, dy, origx, origy, nbx, nby tmp = re.sub('\\s+', ' ', lines[decal].strip()).split(' ') curarray.dx = float(tmp[0]) curarray.dy = float(tmp[1]) tmp = re.sub('\\s+', ' ', lines[decal + 1].strip()).split(' ') curarray.origx = float(tmp[0]) - self.origx tmp = re.sub('\\s+', ' ', lines[decal + 2].strip()).split(' ') curarray.origy = float(tmp[0]) - self.origy tmp = re.sub('\\s+', ' ', lines[decal + 3].strip()).split(' ') curarray.nbx = int(tmp[0]) curarray.nby = int(tmp[1]) decal += 4 #Lecture de la matrice de maillage pour le block en cours myarray = [] for j in range(curarray.nby): newline = [np.int32(curval) for curval in re.sub('\\s+', ' ', lines[decal].strip()).split()] while len(newline) != curarray.nbx: decal += 1 newline = np.concatenate([newline, [np.int32(curval) for curval in re.sub('\\s+', ' ', lines[decal].strip()).split()]]) myarray.append(newline) decal += 1 curarray.array = np.flipud(np.ma.asarray(myarray, order='F', dtype=np.int8)).transpose() # curarray.array[curarray.array < 0] = 0 assert curarray.dtype == np.int8, "Type de block incorrect" assert curarray.array.dtype == np.int8 assert curarray.wolftype == WOLF_ARRAY_FULL_INTEGER8, "Type de block incorrect" #Lecture du contour de block curzone = zone(name=curkey) contourblock = vector(name='contour') curzone.add_vector(contourblock) self.contour.add_zone(curzone) nbvert = int(lines[decal]) for j in range(nbvert): decal += 1 xy = re.sub('\\s+', ' ', lines[decal].strip()).split(' ') myvert = wolfvertex(float(xy[0]), float(xy[1])) contourblock.add_vertex(myvert) decal += 1 curarray.translx = self.translx + self.origx curarray.transly = self.transly + self.origy # Remplissagze du header # --> la matrice MNAP est la référence d'une simulation 2D # pour obtenir les informations de maillage curhead = self.head_blocks[getkeyblock(i)] = header_wolf() curhead.nbx = curarray.nbx curhead.nby = curarray.nby curhead.dx = curarray.dx curhead.dy = curarray.dy curhead.origx = curarray.origx curhead.origy = curarray.origy curhead.translx = curarray.translx curhead.transly = curarray.transly
[docs] def read_txt_header(self): """ Surcharge de la lecture du header Il n'y a pas en tant que tel de header d'un fichier MNAP. Les informations de translation sont dans le fichier ".trl". Les informations de tailles de maille 'fines', Nbx, Nby et coordonnées d'origine sont dans le fichier ".par" """ if os.path.exists(self.filename + '.trl'): with open(self.filename + '.trl') as f: lines = f.read().splitlines() self.translx = float(lines[1]) self.transly = float(lines[2]) if os.path.exists(self.filename + '.par'): with open(self.filename + '.par') as f: lines = f.read().splitlines() self.dx = float(lines[7]) self.dy = float(lines[8]) self.nbx = int(lines[9]) self.nby = int(lines[10]) self.origx = float(lines[11]) self.origy = float(lines[12]) # Imposition du type de stockage self.wolftype = WOLF_ARRAY_MNAP_INTEGER
[docs] def get_one_mask(self, which:int | str): """ Return the mask of the block `which` """ if isinstance(which, int): key = getkeyblock(which) else: key = which return self.myblocks[key].array.data != 1
[docs] def get_all_masks(self): """ Return all masks """ return [curblock.array.data != 1 for curblock in self.myblocks.values()]